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Abstract

This paper proposes a new nonparametric mixed data sampling (MIDAS) model and devel-

ops a framework to infer clusters in a panel regression with mixed frequency data. The nonpara-

metric MIDAS estimation method is more flexible and substantially simpler to implement than5

competing approaches. We show that the proposed clustering algorithm successfully recovers

true membership in the cross-section, both in theory and in simulations, without requiring

prior knowledge of the number of clusters. This methodology is applied to a mixed-frequency

Okun’s law model for state-level data in the U.S. and uncovers four meaningful clusters based

on the dynamic features of state-level labor markets.10
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1 Introduction

Following technological advances, the diffusion of social media, and the efforts of statistical

agencies and private companies, new data sources have recently become available for empirical15

research in economics. In many cases, these data are characterized by large time series and cross

sectional dimensions, with detailed information on economic agents often at a level of disaggregation

more granular than that of traditional data sources. To cope with the changing data environment,

new methods have been developed in the econometrics literature. For instance, to utilize the

high-frequency data for forecasting, regression models concatenating low- and high-frequency vari-20

ables—so called mixed data sampling (MIDAS) models (e.g., Ghysels et al. [2007])— are now widely

used in practical applications. In addition, due to the increasing availability of richer cross-section

data it has become particularly important to efficiently summarize and identify the most important

features of subjects in the cross-section, with the aim of properly account for unit heterogeneity.

In this respect, clustering algorithms developed in the machine learning literature are increasingly25

being used in econometric applications.

Currently, there is no statistical methodology that allows a researcher to identify distinct groups

in a panel data and mixed-frequency regression setting. This paper aims at filling this gap in the

literature by proposing a new nonparametric method. The key innovation of our proposed approach

is the following. First, we propose a new non-parametric MIDAS model based on the Fourier30

flexible form and polynomials. In parametric MIDAS models, arbitrary parametric functions (e.g.,

exponential Almon lag function, beta function) are used to model the coefficients on high-frequency

variables. As these parametric functions are highly nonlinear in general, complicated numerical

optimization is required for estimation. As this estimation is numerically costly and challenging,

practitioners often give MIDAS models a wide berth. Our model requires just ordinary least squares35

(OLS), which eschews estimation difficulties. In addition, it does not require any arbitrary choice

of parametric functional forms in specifying the distributed lags structure of the coefficients on high

frequency variables. To model the coefficients on high-frequency variables, the Fourier flexible form

and polynomials are used, which allows the trajectory of coefficients on high-frequency variables to

be flexibly determined by the data.iii40

iiiA recent study by Babii et al. [2019] develops a general framework with dictionaries for machine-learning time-
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Breitung and Roling [2015] have recently proposed a nonparametric MIDAS model that, like

ours, does not require to specify any functional form for the coefficients on the high-frequency.

Unlike our approach, however, Breitung and Roling [2015]’s methodology requires the careful setting

of two tuning parameters, which is much more computationally demanding.

Another contribution of this paper is to extend the new MIDAS model to the panel data frame-45

work, and to devise a novel clustering method for this panel setting. This clustering algorithm uses

the idea of penalized regression with penalty function as in Ma and Huang [2017], and is adapted

to general panel data settings including mixed-frequency panel data. An important feature of the

proposed method is that the identification of clusters is entirely data-driven, while previous studies

(e.g. Andreou et al. [2010]) arbitrarily divide observations into different groups. However, this ap-50

proach crucially depends on prior knowledge and homogeneity within each group is not necessarily

guaranteed.iv

Simulations conducted in this paper show many desirable features of our method. First, the

proposed non-parametric MIDAS model provides the best one-step-ahead forecast among paramet-

ric and non-parametric MIDAS models widely used in empirical studies. Second, our clustering55

method yields more precise parameter estimation and better forecasting properties than competing

approaches. Third, the proposed clustering algorithm is faster than competitors (e.g. K-means

clustering) when the number of underlying clusters is unknown.

As a relevant empirical application, we use our method to explore heterogeneity in labor market

dynamics across states in the U.S. using a mixed-frequency panel Okun’s law model. Okun’s law is60

an empirical relationship that relates changes in unemployment rate to GDP growth. Usually an

Okun’s law model is specified at quarterly frequency, as GDP growth is available only quarterly. In

series regression models, and recommends to use Legendre polynomials for the coefficients on high-frequency variables
in a MIDAS model. Our use of trigometric functions for the MIDAS coefficients is a special case of Babii et al. [2019]’s
framework, and inherits advantages similar to those of Legendre polynomials in the estimation.

ivIt should be noted that the application of proposed clustering algorithm is not limited to datasets with mixed
sampling frequencies. It can be applied to a general panel data setting with a fixed sampling frequency, in which case
the proposed method can be an appealing alternative to Su et al. [2016]’s method. There are three aspects why our
approach may have advantages over Su et al. [2016]’s method. First, our penalty function is more general than theirs.
Second, Su et al. [2016]’s method requires to pre-specify a possible ranges for the number of clusters in addition to
the turning parameter. If there is no prior knowledge of the number of clusters and if the size of cross-section
is large, then finding right clusters becomes very computationally challenging as the various possibilities need be
considered. Our method requires a few user-chosen parameters, but the range of choices is well defined and does not
yield intractable possibilities. Lastly, Su et al. [2016]’s method requires the number of clusters to be fixed regardless
of the size of cross-section. The theory behind our clustering algorithm does flexibly allow the number of groups to
adjust to a change in the size of cross-section.
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our application, we include weekly initial claims of unemployment insurance (UI) benefits, which

is known as the most timely indicator of job losses, as the high-frequency variable in a mixed

frequency Okun’s law model. By doing so, the model can better characterize the sudden rise in65

unemployment rate at the onset of a recession, picking up sudden bursts in layoffs. An additional

desirable feature of the mixed-frequency Okun’s law model is that it can be used to nowcast the

unemployment rate at the state level on a weekly basis.

The algorithm identifies four clusters of states based on the responsiveness of unemployment

rate to GDP growth and on the pattern of coefficients on weekly initial claims within the quarter.70

The coefficients on GDP growth and initial claims most likely reflect structural aspects of state-

level labor markets (e.g. the industry composition) and local labor-market practices in hiring and

firing. Hence, the clusters identified by the model most likely capture relevant heterogeneity in the

functioning of labor markets in different states.

We relate the identified clusters to observable state–level attributes such as the small-firms75

employment share, industry composition, the relevance of oil production, and the share of long-

term unemployment out of total unemployment. Each cluster exhibits multidimensional attributes,

suggesting that the differences in labor-market dynamics across states cannot be determined or

accurately summarized by one or two observable factors. Another way to say this is that the

clustering algorithm is able to capture a state’s unobserved attributes which are not fully reflected80

in the data but are nevertheless crucial for unemployment dynamics. In this regard, our proposed

methodology can reveal similarities and differences across states in the functioning of their labor

markets purely based on the data, and can provide a new understanding of regional heterogeneity

in labor market dynamics.

The rest of this paper is organized as follows. Section 2 introduces the proposed nonparametric85

MIDAS approach using the Fourier flexible form and polynomials. Subsection 2.1 discusses the

nonparametric MIDAS estimation in a non-panel setting. Subsection 2.2 demonstrates the proposed

method’s estimation and forecasting accuracy in finite samples. Section 3 presents the clustering

algorithm using the Fourier-transformed high-frequency variable and other possible covariates. The

proposed clustering approach delivers accurate estimates, as proved in theory and shown in the90

finite sample simulations. Section 4.1 provides an empirical application of the method. Technical
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proofs are relegated to Section B in the appendix.

The following notation will be used throughout the paper. The p-norm of a vector x = (x1, . . . ,

xm)′ is ||x||p = (
∑m
i=1 x

p
i )

1/p. For an m×n matrix A with its (i, j)th element being aij , ||A||p indi-

cates the p-norm induced by the corresponding vector norm. That is, ||A||p = supx 6=0 ||Ax||p/||x||p.95

In particular, ||A||1 = maxj=1,...,n

∑m
i=1 |aij | and ||A||∞ = maxi=1,...,m

∑n
j=1 |aij |. For a symmetric

and positive definite matrix A, let λmin(A) and λmax(A) indicate the smallest and largest eigenval-

ues of A, respectively. It is worth noting that ||A||2 = λmax(A). Ip is a p × p identity matrix and

⊗ denotes the Kronecker product. For any real number x, bxc denotes the largest integer that is

smaller than or equal to x. The symbol 1{·} denotes the indicator function.100

2 Nonparametric MIDAS

In this section, we introduce our nonparametric MIDAS approach using the Fourier flexible form

[Gallant, 1981]. We first introduce the framework, then confirm that the proposed nonparmetric

MIDAS model is a good approximation of popular parametric MIDAS models in finite samples.

2.1 Nonparametric MIDAS with the Fourier flexible form and polyno-105

mials

Consider the following MIDAS model with the forecast lead h ≥ 0:

yt+h =

q∑
i=1

αizt,i +

m−1∑
j=0

β∗j/mxt,j + εt+h = z′tα+ xt
′β∗ + εt+h, (1)

for t = 1, . . . , T . Here, zt is the q-vector of low-frequency covariates at time t, and α = (α1, . . . , αq)
′

is the corresponding coefficient vector. The vector xt = (xt,0, . . . , xt,m−1)′ is the high-frequency

variable at t and β∗ = (β∗0/m, . . . , β
∗
m−1/m)′ are the coefficients that aggregate xt to the low-

frequency. In a parametric MIDAS model, the coefficients β∗j/m can be written as a multiple of

ωj(θ), where weights ωj(θ) are assumed to be generated by, for example, an exponential Almon lag

function

β∗j/m = α∗ωj(θ) =
α∗ exp(θ1j + θ2j

2 + · · ·+ θQj
Q)∑m−1

i=0 exp(θ1i+ θ2i2 + · · ·+ θQjQ)
,
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and α∗ and θ = (θ1, θ2, . . . , θQ) are parameters that need to be estimated from data. However, the

form of ωj(·) is somewhat limited, and it requires nonlinear estimation. In this paper, we propose

to model β∗j/m using the Fourier flexible form and polynomials. The MIDAS coefficients β∗j/m are110

assumed to be generated by

β∗j/m =

L∑
l=0

βl(j/m)l +

K∑
k=1

{β1,k sin(2πk · j/m) + β2,k cos(2πk · j/m)} , (2)

for some positive integers L and K. The Fourier flexible form has been frequently used in macroe-

conomics and finance since Gallant [1981]. It has been demonstrated that the Fourier flexible form

is capable of approximating most forms of nonlinear time trends to any degree of accuracy if a suffi-

cient number of parameters is used, and that a small K is often enough to reasonably approximate115

smooth functions with finite numbers of breaks [Becker et al., 2004, 2006, Enders and Lee, 2012,

Rodrigues and Robert Taylor, 2012, Güriş, 2017, Perron et al., 2017]. In addition to the Fourier

flexible form, we also consider a few polynomial trends to cover wider range of nonlinear functions,

following suggestions in Perron et al. [2017].

The MIDAS model (1) with the Fourier flexible form (2) can be expressed as

y = Zα+ Xβ∗ + ε = Zα+ X̃β + ε = Wγ + ε,

where y = (y1+h, . . . , yT+h)′, ε = (ε1+h, . . . , εT+h)′, Z = [z1, · · · , zT ]
′
, X = [x1, · · · ,xT ]

′
, W = (Z,120

X̃), X̃ = XM′ = [x̃1, · · · , x̃T ]
′
, and

M =



(0/m)0 (1/m)0 · · · ((m− 1)/m)0

...
...

...

(0/m)L (1/m)L · · · ((m− 1)/m)L

sin(2π · 1 · 0/m) sin(2π · 1 · 1/m) · · · sin(2π · 1 · (m− 1)/m)

cos(2π · 1 · 0/m) cos(2π · 1 · 1/m) · · · cos(2π · 1 · (m− 1)/m)

...
...

...

sin(2π ·K · 0/m) sin(2π ·K · 1/m) · · · sin(2π ·K · (m− 1)/m)

cos(2π ·K · 0/m) cos(2π ·K · 1/m) · · · cos(2π ·K · (m− 1)/m)



. (3)
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Here, the matrix M can be understood as a Fourier transform operator. This Fourier transformation

summarizes the information in an m-dimensional vector xt into a (2K +L+ 1)-dimensional vector

x̃t = Mxt = (x̃t,0, x̃t,1, · · · , x̃t,L, x̃(s)t,1 , x̃
(c)
t,1 , · · · , x̃

(s)
t,K , x̃

(c)
t,K)′, where x̃t,l, x̃

(s)
t,k and x̃

(c)
t,k are transformed

high-frequency data for l = 0, . . . , L and k = 1, . . . ,K, and are defined as x̃t,l = (j/m)lxt,j ,125

x̃
(s)
t,k = sin(2πk · j/m)xt,j , and x̃

(c)
t,k = cos(2πk · j/m)xt,j .

v.

Unlike parametric MIDAS models, this model is linear. Noting that β∗ = M′β, the ordinary

least squares (OLS) estimator of β∗ can be written as

β̂∗ = M′Dγ̂ = M′D(W′W)−1W′y = β∗ + M′D

(
1

T
W′W

)−1(
1

T
W′ε

)
, (4)

where D =
[
0(L+1+2K)×q, IL+1+2K

]
, and IL+1+2K is an identity matrix. Under some regularity

conditions, β can be estimated consistently by the OLS estimator β̂∗.130

2.2 Simulation: Nonparametric MIDAS

This section presents simulation results to check the estimation and forecasting accuracy of the

proposed nonparametric MIDAS estimation using the Fourier flexible form in finite samples. Our

method is compared with the nonparametric MIDAS approach proposed by Breitung and Roling

[2015], where a smoothness condition was imposed on β∗j/m, without involving a weight function135

ωj(·), similarly to our method. However, Breitung and Roling [2015] requires choosing a tuning

parameter. See Section A.1 in the supplementary material for more details about Breitung and

Roling [2015].

The data is generated in a similar setting as Breitung and Roling [2015]. For j = 0, . . . ,m− 1,

t = 1, . . . , T ,140

yt+h = α0 +

m−1∑
j=0

β∗j xt,j + εt+h, xt,j = c+ dxt,j−1 + ut,j , (5)

where εt+h
iid∼ N(0, 0.125), ut,j

iid∼ N(0, 1), α0 = 0.5, β∗j = α1ωj(θ), α1 ∈ {0.2, 0.3, 0.4}, T ∈

{100, 200, 400}, and the frequency ratio m ∈ {20, 40, 60, 150, 365}. For the AR(1) high-frequency

vNote that x̃t can effectively summarize the information in xt, because relatively small K and L are enough to
capture main characteristics of a nonparametric trend function. For instance, Enders and Lee [2012] reported that
even a single frequency K = 1 allows for multiple smooth breaks.
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regressor, c = 0.5 and d = 0.9 are considered. Four MIDAS weight functions ωj(θ) are considered:

• Exponential Decline: ωj(θ1, θ2) =
exp{θ1j + θ2j

2}∑m−1
i=0 exp{θ1i+ θ2i2}

, θ1 = 7× 10−4, θ2 = −6× 10−3;

• Hump-Shaped: ωj(θ1, θ2) =
exp{θ1j − θ2j2}∑m−1
i=0 exp{θ1i− θ2i2}

, θ1 = 0.08, θ2 = θ1/10, θ1/20, θ1/30;145

• Linear Decline: ωj(θ1, θ2) =
θ1 + θ2(j − 1)

θ1(m) + θ2(m)(m+ 1)/2
, θ1 = 1, θ2 = 0.05;

• Cyclical: ωj(θ1, θ2) =
θ1
m

{
sin

(
θ2 + 2π

j

m− 1

)}
, θ2 = 0.01, θ1 = 5, 5/2, 5/3;

• Discrete: ωj = (0, 0, · · · , 0, 5/m, · · · , 5/m) where the value 5/m is assigned to the last one fifth

elements and 0 to the rest.

For our method, K = 3 and L = 2 are used, and the tuning parameter in Breitung and Roling150

[2015] is chosen to minimize AIC. For the evaluation of the estimation accuracy, the root mean

square errors (RMSE) of estimators of β∗ = (β∗0 , . . . , β
∗
m−1)′ are considered. Our estimator β̂

is brought back to the original scale by taking M′β̂. The RMSE of our method is calculated as

RMSE = ‖M′β̂−β∗‖2. The number of Monte-Carlo (MC) replications is 1000. For the comparison

of forecasting accuracy, the root mean square forecast error (RMSFE) of the one-step-ahead forecast155

is considered. The number of MC replication is 250. The RMSFE is calculated as following:

1. Obtain the estimated parameter β̂∗T/2 in the regression model yt+h = xt
′β∗+ εt+h for t = 1,

· · · , T/2.

2. Calculate the one-step-ahead forecast using β̂∗T/2, that is, ŷT/2+h+1 = xT/2+1
′β̂∗T/2.

3. Repeat steps 1-2 and obtain ŷT/2+h+k = xT/2+kβ̂
∗
T/2+k−1 for k = 2, . . . , T/2. Here, β̂∗T/2+k−1160

is calculated using (yt+h,x
′
t) for all t = k, . . . , T/2 + k − 1.

4. Once the estimated responses ŷt+h for t = T/2+1, . . . , T are calculated, calculate the RMSFE

of the predicted response: RMSFE =
√

(2/T )
∑T/2
k=1(ŷT/2+h+k − yT/2+h+k)2.

Table 1 presents the medians of RMSEs of β estimation using Breitung and Roling [2015]

(B&R) and our method (Fourier). For both methods, the estimation accuracy generally increases165

as the frequency ratio or the sample size become larger. Also for all five shapes of MIDAS weights,
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our approach substantially improves estimation accuracy compared with B&R’s method. This

improvement is more substantial when the sample size T or the frequency ratio m is relatively

large. This finding implies that our approach tends to capture the flexibility of various shapes of

MIDAS weights more precisely than B&R’s approach. Another notable feature is that α1 does not170

have much effect on the accuracy of the estimation for both methods. It seems that for these two

nonparametric methods, the MIDAS shape matters, but not the magnitude of the signal. Table

2 presents the median one-step ahead RMSFEs. For both methods, the forecasts become more

accurate as the sample size T , or the frequency ratio m increases for all five MIDAS shapes. In

general, the Fourier flexible form tends to provide slightly more precise forecasts compared with175

the B&R’s method. These results show that the proposed the Fourier flexible form approach tends

to deliver more accurate estimation and forecasting compared with a competing nonparametric

method.
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3 Panel Data and Clustering

In this section, a clustering procedure of MIDAS coefficients for panel data is proposed. The180

high-frequency regressors are aggregated using nonparametric MIDAS coefficient functions intro-

duced in Section 2 for each cross-section object. These coefficients are further clustered using a

penalized regression approach. The linearity of our MIDAS model confers a great advantage to the

proposed clustering procedure, as the clustering alone would require quite heavy computations. We

first review relevant literature on clustering.185

3.1 Literature Review on Clustering Based on Penalized Regression

Clustering using penalized regression based on similarity in the coefficients is a recent develop-

ment. Su et al. [2016], to our best knowledge, is the first study that develops a clustering algorithm

for panel data using penalized regression. Su et al. [2016] modified the traditional Lasso penalty in

regression models into classifier-Lasso (C-Lasso) that penalizes the difference between the estimated190

parameters of each subject and the estimated average parameters of groups. C-Lasso requires a

predetermined maximum for the number of groups and a choice of tuning parameter.

Ma and Huang [2017] introduced a penalized method for cross-sectional data, with clustering

based on intercepts. The penalty functions used in Ma and Huang [2017] are minimax concave

penalty (MCP) [Zhang, 2010] and smoothly clipped absolute deviations penalty (SCAD) [Fan and195

Li, 2001], which not only share the sparsity properties like Lasso but are also asymptotically un-

biased. Later on, Ma and Huang [2016] extended their work, increasing the number of parameters

used in clustering. However, neither Ma and Huang [2016] nor Ma and Huang [2017] can be applied

to a panel data setting. Indeed, their method is based on strong assumptions that make it nontrivial

to extend to panel data.200

Zhu and Qu [2018] is the only study, to the best of our knowledge, that extends Ma and Huang’s

clustering procedure to a data environment similar to panel data. Zhu and Qu [2018] applied Ma

and Huang [2017]’s algorithm to repeated cross-section data with one dependent variable and one

covariate. In their model, the dependent variable is assumed to vary smoothly in response to the

covariate, and this smooth function is estimated using a nonparametric B-spline. Strictly speaking,205
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Zhu and Qu [2018]’s method is not designed for panel data. However, if a covariate is allowed to

vary over time, Zhu and Qu [2018]’s method can be applied to simple panel data. Lv et al. [2019]

further extended Zhu and Qu [2018]’s approach allowing for one random effect as an additional

covariate.

The clustering procedure we propose is based on Ma and Huang [2017] and Ma and Huang [2016].210

However, it should also be noted that this extension is nontrivial. In particular, the assumption

(C3) in Ma and Huang [2016] requires all variables on the right-hand side of the equation to be

non-random and have length exactly 1. This assumption may be appropriate for a clinical trial

setting, for which Ma and Huang [2017], Ma and Huang [2016], Zhu and Qu [2018], Lv et al. [2019],

and other related papers are developed. However, this assumption is too strong for a more general215

panel data setting where time-varying regressors are included. The theory we present circumvent

this issue.

3.2 Nonparametric MIDAS for Panel Data and Clustering

Suppose there are n subjects in the cross-section of panel data. For simplicity, all subjects

are assumed to have the same sample size T and frequency ratio m. For the i-th subject, let zi,t

be the q-vector of covariates including the intercept at time t (t = 1, . . . , T ), and let αi be the

corresponding coefficient. Consider the following MIDAS model with lead h ≥ 0:

yi,t+h = z′i,tαi + x′i,tβ
∗
i + εi,t+h, t = 1, . . . , T, i = 1, . . . , n,

or equivalently,

yi = Ziαi +Xiβ
∗
i + εi, i = 1, . . . , n, (6)

where yi = (yi,1+h, . . . , yi,T+h)′, εi = (εi,1+h, . . . , εi,T+h)′, β∗i = (β∗i,0, . . . , β
∗
i,m−1)′, Xi is a T ×m220

matrix with t-th row being x′i,t = (xi,t,0, xi,t,1, . . . , xi,t,m−1), and Zi is a T × q matrix with t-th row

being z′i,t = (zi,t,1, . . . , zi,t,q).

We assume that the MIDAS coefficients β∗i takes the Fourier flexible form as in (2). For each

subject i = 1, . . . , n, X̃i = XiM
′, where M is from (3). Let Wi = (Zi, X̃i) and γi = (α′i,β

′
i)
′. The

13



equation (6) can be rewritten as225

yi = (Zi, Xi)

αi
β∗i

+ εi = (Zi, X̃i)

αi
βi

+ εi = Wiγi + εi (7)

Concatenating the yi in (7) into y, a vector of length nT , we have:

y = Wγ + ε, (8)

where y = (y′1, . . . ,y
′
n)′, W = diag(W1, . . . ,Wn), γ = (γ′1, . . . ,γ

′
n)′, and ε = (ε′1, . . . , ε

′
n)′. Let

p = q + 2K + L+ 1. In our formulation, γi is a vector of length p and γ is of length npvi.

Remark 1. The arguments in this section should still be valid with different sample sizes and

different frequency ratios for different subjects/time periods, at the expense of more complicated

notation and slight changes in the results. The major complication arises from the need of using

different Mi,t for each i and t. That is, x̃i,t = Mi,txi,t, where

Mi,t =



(0/mi,t)
0 (1/mi,t)

0 · · · {(mi,t − 1)/mi,t}0
...

...
...

(0/mi,t)
L (1/mi,t)

L · · · {(mi,t − 1)/mi,t}L

sin(2π · 1 · 0/mi,t) sin(2π · 1 · 1/mi,t) · · · sin{2π · 1 · (mi,t − 1)/mi,t}

cos(2π · 1 · 0/mi,t) cos(2π · 1 · 1/mi,t) · · · cos{2π · 1 · (mi,t − 1)/mi,t}
...

...
...

sin(2π ·K · 0/mi,t) sin(2π ·K · 1/mi,t) · · · sin{2π ·K · (mi,t − 1)/mi,t}

cos(2π ·K · 0/mi,t) cos(2π ·K · 1/mi,t) · · · cos{2π ·K · (mi,t − 1)/mi,t}


should be used, and y is a vector of length

∑n
i=1 Ti rather than nT . As this makes the notation for

the subsequent proofs more complicated without adding fundamental differences, this generalization230

is not pursued in this paper. In contrast, it is necessary to use the same L and K for all subjects

viThe framework introduced in this section and in Section 2.1 considers only one high-frequency variable. However,
our framework can easily extend to accommodate more than one high-frequency variables. For instance, if two high-
frequency variables are considered, the length of γi will be q + 2K + L + 1 + 2K′ + L′ + 1, where 2K′ and L′ + 1
are the numbers of trigonometric functions and polynomials considered for the second high-frequency variable. The
subsequent clustering procedure is also straightforward.
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i = 1, . . . , n, to allow for direct comparison of coefficients γi.

Consider the estimation of parameters in (8) if the subjects can be separated into a small number

of groups. Denote the number of groups by G. The advantage of the proposed procedure is that

it does not require any prior knowledge of group information or the number of groups. The only235

information required is the features of cluster. For example, if we are willing to assume that a cluster

has the same parameters of interest–that is, all elements in γi are the same within a group–the

clusters are identified solely based on parameter estimates.vii

An OLS solution of (8) would minimize 1
2 ||y −Wγ||

2
2, but this would not reflect the relevant

group information. To reveal clusters, we propose a penalized regression method to force all elements240

in γi to have similar values within a group. Our method is based on the assumption that if two

subjects i and j belong to the same group, the difference of their group-specific parameter would be

zero, i.e., ηij = γi − γj = 0. In this case, the OLS estimator of ηij would also be somewhat close

to a zero vector, though it would not be exactly zero. However, since i and j are in the same group,

ηij should be better estimated to be exactly zero, rather than “somewhat close” to zero. This can245

be forced by imposing a penalty for small values of ηij . In particular, if the number of groups N

is much smaller than the number of subjects n, only a small number of ηij would be nonzero. The

following penalized objective function is considered:

Q(γ) =
1

2
||y −Wγ||22 +

∑
1≤i<j≤n

ρθ(γi − γj , λ1), (9)

where ρθ(·, λ1) is an appropriate penalty function, and θ and λ1 are tuning parameters that discipline

clustering. Clustering using a penalized regression as in (9) has been explored in a number of papers

[Ma and Huang, 2017, 2016, Zhu and Qu, 2018, Lv et al., 2019]. As illustrated in the previously-

mentioned papers, this optimization problem can be solved using the alternating direction method

of multipliers (ADMM) algorithm, which can also be implemented in our setting. Section A.2 in the

supplementary material introduces the ADMM algorithm in our setting, proving that the proposed

viiIt is possible to relax this assumption by letting some of γi be individual-specific, rather than assuming all
parameters are strongly tied with groups. If there are subject-specific coefficients, a similar argument would still
work, although some rates and conditions would change. In particular, the number of coefficients that are subject-
specific should be added following a similar argument to Ma and Huang [2016, 2017]. However, for brevity, this
direction will be not elaborated in this paper.
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algorithm is convergent. The tuning parameter λ1 can be chosen by minimizing information criteria

such as

BICλ1 = log

(
‖y −W γ̂‖22

n

)
+

log(n) ·
(
Ĝp
)

n
.

The rest of this section presents theoretical properties of the estimators that solve the op-

timization problem in (9). Let G be the true number of groups and Gg be the set of subject250

indices that corresponds to the g-th group, for g = 1, . . . , G. Assume that each subject belongs

to exactly one group; that is, G1, . . . ,GG are mutually exclusive and G1 ∪ . . . ∪ GG = {1, . . . , n}.

Denote |Gg| be the number of elements in Gg, for g = 1, . . . , G. Define gmin = ming=1,...,G |Gg| and

gmax = maxg=1,...,G |Gg|. Let γ0
i be the true parameter of the i-th subject, and ϕ0

g the true common

vector for the group Gg. The common value for the γis of the group Gg is denoted by ϕg; that is,255

γi = ϕg for all i ∈ Gg and for any g = 1, · · · , G. Set γ0 = (γ0
1
′
, · · · ,γ0

n
′
)′, ϕ0 = (ϕ0

1
′
, · · · ,ϕ0

G
′
)′, and

ϕ = (ϕ′1, · · · ,ϕ′G)′. Denote the estimated group by Ĝg = {i : γ̂i = ϕ̂g, 1 ≤ i ≤ n}, for g = 1, . . . , Ĝ,

where Ĝ is the estimated number of groups. For an estimate γ̂ of γ, the corresponding estimated

group parameter for the g-th group is defined as ϕ̂g = |Ĝg|−1
∑
i∈Ĝg γ̂i. Note that ϕ̂1, · · · , ϕ̂Ĝ are

the distinct values, since the clustering algorithm would lead to η̂ij = 0 [Ma and Huang, 2017].260

Let Π be an n × G matrix with (i, g)-th element being 1 if i-th subject belongs to the g-th

group, and 0 otherwise. Then γ = (Π ⊗ Ip)ϕ = Γϕ, where Γ = (Π ⊗ Ip). An oracle estimator of

γ0 can be defined as γ̂or = Γϕ̂or, where ϕ̂or = argminϕ∈RGp

1

2
||y−WΓϕ||22 = (Γ′W ′WΓ)−1Γ′W ′y.

The matrix Γ′W ′WΓ is invertible as long as n � G. Here, the estimator γ̂or is called an oracle

estimator since it utilizes the knowledge of the true group memberships in Π, which is not feasible265

in practice. Asymptotic properties of this oracle estimator γ̂or will be presented in Theorem 1.

Then the asymptotic equivalence of our estimator γ̂ and the oracle estimator will be introduced in

Theorem 2.

Assumption 1. The number of clusters is much smaller than the number of subjects, i.e., G� n.

In this paper, the case with G ≥ 2 is considered. The smallest group size gmin is smaller than n/G.270

Assumption 2. Assume λmin(
∑
i∈Gg W

′
iWi) ≥ c|Gg|T , λmax(

∑
i∈Gg W

′
iWi) ≤ c′nT , and max1≤i≤n

λmax(W ′iWi) ≤ c′′T for some constants c, c′ and c′′ that do not depend on g = 1, . . . , G. Further,
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assume that for any ε > 0, there exist M1, . . . ,M4 > 0 such that

P

(
sup

i=1,...,n
||Z ′iZi||∞ >

√
qTM1

)
< ε, P

(
sup

i=1,...,n
||X ′iXi||∞ >

√
mTM2

)
< ε,

P

(
sup

i=1,...,n
||Z ′iXi||∞ >

√
mTM3

)
< ε, P

(
sup

i=1,...,n
||X ′iZi||∞ >

√
qTM4

)
< ε.

Assumption 3. The penalty function ρθ(t) = λ−1ρθ(t, λ) is symmetric, nondecreasing, and concave

in t, on t ∈ [0,∞). There exists a positive constant cρ such that ρ(t) is constant for all t ≥ cρλ.

Assume that ρ(t) is differentiable, ρ′(t) is continuous except for a finite number of t, ρ(0) = 0, and

ρ′(0+) = 1.

Assumption 4. There exists a constant c̃ > 0 such that

E

{
exp

(
n∑
i=1

T∑
t=1

νi,tεi,t

)}
≤ exp

(
c̃

n∑
i=1

T∑
t=1

ν2i,t

)

for any real numbers νi,t, for i = 1, . . . , n and t = 1, . . . , T .275

Assumption 1 assures sparsity, which is often necessary for the validity of the penalized regres-

sion such as (9). We also limit our interest to the case with more than one cluster, but similar

arguments also works for the homogeneous caseviii. Assumption 2 is reasonable considering the

usual assumption that the smallest eigenvalue of W ′iWi is bounded by cT where T is the sample

size and c is some constant. This condition can be relaxed allowing different cg for different groups.280

In such a case, our results would not hold if the number of clusters G grows to infinity. It would

still work as long as G is finite, by choosing c = ming=1,...,G cg in the statement of Theorem 1.

Assumption 3 is adapted from Ma and Huang [2017] and is conventional in the literature. Popular

penalty functions such as MCP and SCAD penalty satisfy this assumption. Assumption 4 holds for

any independent subgaussian vector ε, which is commonly assumed in high-dimensional settings.285

Remark 2. Assumption 2 is more appropriate for time series data than those in Ma and Huang

[2017, 2016]. For instance, assumption (C3) in Ma and Huang [2016] requires, for a given t,∑n
i=1 z

2
i,t,l = n, for l = 1, . . . , q and

∑n
i=1 x̃

2
i,t,j1{i ∈ Gg} = |Gg| for j = 1, . . . , 2K+L+1, if the clus-

tering is solely based on x̃i,t,j , but not on zi,t,l. Here, x̃i,t,j are the elements of Fourier transformed

viiiThe extension to a homogeneous case can be done similarly to that of Ma and Huang [2017].
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high-frequency variable x̃i,t = Mxi,t
ix. If we were to extend these assumptions to a panel setting,290

one might modify them to
∑T
t=1

∑n
i=1 z

2
i,t,l = nT , for l = 1, . . . , q and

∑T
t=1

∑n
i=1 x̃

2
i,t,j1{i ∈ Gg} =

|Gg|T for j = 1, . . . , 2K + L + 1. These assumptions are unnecessarily strong for panel data. The

former assumption,
∑T
t=1

∑n
i=1 z

2
i,t,l = nT , cannot be satisfied for a time series zi,t,l unless it is

properly standardized. Standardizing relevant variables before clustering is often necessary, but

only for the variables that are involved in clustering. In this case, clustering is not based on zi,t,l,295

standardizing this variable would add a redundant step that would not even affect the clustering

results. The latter assumption,
∑T
t=1

∑n
i=1 x̃

2
i,t,j1{i ∈ Gg} = |Gg|T , is also too strong, as it requires

standardizing x̃i,t,j within its true cluster, even before any clustering can be done. To remedy

the issues in Ma and Huang [2017, 2016], we lifted these strong assumptions and replaced them

with Assumption 2 above, which is more appropriate for time series. Lemmas in Section B.1 of the300

supplementary material address the issues in proofs due to the absence of these strong assumptions.

The following theorem provides conditions for the convergence of the oracle estimator γ̂or.

Theorem 1. If Assumptions 1–4 hold, then

P (||γ̂or − γ0||∞ ≤ φn,T,G,ζ) ≥ 1− e−ι,

where φn,T,G,ζ =

√
2c̃

c
B

1/2
q,m

(mM̃gmax)1/2(Gp)3/4

gminT 3/4
(Gp+ 2

√
Gp
√
ζ+ 2ζ)1/2, Bq,m = [q1/2 +m1/2(L+

1+2K)]1/2, M̃ = max{M1,M2,M3,M4}, ι = min{ζ,− log(ε)}− log(2), for ε chosen in Assumption

2. Furthermore, if g3min/gmax � n5/3T 1/3, for any vector cn ∈ RGp such that ‖cn‖2 = 1, the

asymptotic distribution of γ̂or is

c′n(γ̂or − γ0)→ N(0, σ2
γ),

where σ2
γ = V ar(γ̂or − γ0).

The proof of Theorem 1 can be found in Section B in the supplementary material. Theorem

1 implies that with an appropriate choice of ζn,T,G, the oracle estimator converges to the true305

ixNote that this setting is slightly different from our setting, where both zi,t,l and x̃i,t,l are considered in the
clustering procedure. Treatments for variables that are not included in the clustering is described in Section A.5 in
supplementary material.
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parameter in probability.

Corollary 1. Under the assumptions of Theorem 1, the oracle estimator γ̂or converges to the true

parameter γ0 in probability if one of the following conditions holds:

1. The number n is fixed, and T →∞.

2. The number n → ∞, and G is fixed. The number T is either fixed or T → ∞. Further, the310

size of the smallest group is large enough such that gmin = O(n1/2+α̃4) for a positive constant

α̃4 < 1/2.

3. The number n → ∞, and G → ∞. The number T is either fixed or T → ∞. Further, the

size of the smallest group is large enough such that gmin = O(n5/7+α̃5) for a positive constant

α̃5 < 2/7.315

Corollary 1 states that the oracle estimator is consistent if n is fixed, or if the size of the smallest

group grows somewhat comparably to the increase of n. More specifically, if n is fixed, increasing

information across time is necessary for consistent estimation. On the contrary, when increasing

information across panel can be obtained, T can be held fixed, as long as all the groups have

reasonable sizes.320

Theorem 2 demonstrates that the proposed estimator of the parameter γ is equivalent to the

oracle estimator with probability approaching to 1, which implies that our estimator converges to

the true parameter without prior knowledge of the true group memberships. For our clustering

algorithm to work properly, groups should be distinctive enough. Assumption 5 states that the

pairwise differences of the true parameters should be large enough for different groups.325

Assumption 5. The minimal difference of the common values between two panels is

bn,T,G = min
i∈Gg,j∈Gg′ ,g 6=g′

‖γ0
i − γ0

j‖2 = min
g 6=g′
‖ϕ0

g −ϕ0
g′‖2 > aλ1 + 2pφn,T,G,

for some constant a > 0.

Theorem 2. Assume the conditions of Theorem 1 and Assumption 5 hold. For λ1 � pφn,T,G,

where φn,T,G is given in Theorem 1, the local minimizer γ̂ of (9) is almost surely the same as the

oracle estimator γ̂or, if one of the following conditions hold:
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1. Suppose n → ∞, and T is fixed. The size of the smallest group is large enough such that330

(p+ 2
√
p+ 2)1/2n1/2 � gmin = O(n7/9+α̃0) for a positive constant α̃0 < 2/9;

2. Suppose n, T → ∞, and G is fixed. The size of the smallest group is large enough such that

gmin = O(n1/2+α̃4) for a positive constant α̃4 < 1/2;

3. Suppose n, T,G → ∞. The size of the smallest group is large enough such that one of the

following conditions is met:335

(a) For a positive constant α̃3 < 2/9, max
{
n7/13

T 1/13 , (p+ 2
√
p+ 2)1/2n1/2

}
� gmin = O(n7/9+α̃3);

or,

(b) for a positive constant α̃5 < 2/7, gmin = O(n5/7+α̃5).

That is, if one of the above conditions holds, as nT →∞,

P (γ̂ = γ̂or)→ 1.

Theorem 2 demonstrates that our estimator with prior knowledge of the group information

is, asymptotically, as good as the oracle estimator with probability 1, under the presented set of340

assumptions.x There are a couple of differences between the two estimators, γ̂ and γ̂or. The first

note-worthy difference is that the oracle estimator converges to the true parameter with probability

1, even when n is fixed, whereas the non-oracle estimator does need n→∞. This is expected since

the oracle estimator already knows the true group membership, so that increasing the information

in time domain only can make the estimator precise enough. On the contrary, the non-oracle345

estimator needs increasing information in cross-section to estimate the group memberships correctly.

The other difference is that the non-oracle needs stronger assumption on the minimum group size.

Again, this is natural, since the non-oracle estimator lacks the group information.

xThe theoretical results presented in this section handle the case with G ≥ 2. In the homogeneous panel case,
similar arguments can be made, following Ma and Huang [2016]. The details are not presented in this paper, but are
available upon request.
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3.3 Simulation: Clustering

The simulation settings in this section are designed to achieve two goals. The first goal is350

demonstrating the clustering accuracy of the proposed method in finite samples, and providing a

guidance on the choice of the tuning parameters involved in our method, in particular, θ and λ1. The

other goal is comparing the performance of the proposed method with other clustering algorithms

using the penalized regression idea. To our best knowledge, the only other such clustering algorithm

is Su et al. [2016] (SSP, hereafter). This method is employed in our MIDAS context by taking the355

Fourier transformation and applying SSP’s penalty function as in equation (A.4) in Section A.4 in

the supplementary material, rather than (9). This method is labeled as “Fourier-SSP.” In addition,

our penalty function (9) does not limit how the MIDAS part should be handled. Therefore, B&R’s

approach can be adapted in place of the Fourier flexible form for our method. This method is labeled

as “B&R-clust.” Our method is labeled as “F-clust”. Sections A.3 and A.4 in the supplementary360

material provide algorithms and relevant details of theses two additional clustering methods.

Section 3.3.1 provides the finite sample performance of F-clust and B&R-clust for different values

of θ. Section 3.3.2 provides guidance on the choice of θ and λ1 for our method. Using the optimal

θ suggested in Section 3.3.2, Section 3.3.3 compares the three methods, F-clust, B&R-clust, and

Fouier-SSP, in term of parameter estimation accuracy and forecasting accuracy.365

In all simulation settings, two clusters with the exponential decline and the cyclical function

shapes shown in Section 2.2 are considered. In each cluster, 15 independent time series are gen-

erated. That is, there are 30 coefficient vectors, and two groups are expected after clustering.

Each data process follows (5) shown in Section 2.2; θ ∈ {2, 2.5}, λ1 ∈ {1, 1.5, · · · , 4.5}, β0 = 0,

T ∈ {100, 200, 400}, m = {20, 40}, and α1 ∈ {0.2, 0.3, 0.4} are considered. Notice that αi are all370

null-vectors, that is, γi = βi. The ADMM algorithm used for the optimization problem (9) requires

one additional parameter, λ2. See Algorithm 1 in Section A.2 in the supplementary material for

more details. Following the choice of Zhu and Qu [2018], λ2 = 1 is used. The clustering algorithm

was forced to stop at the 3,000-th iteration if the stopping conditions cannot be satisfied during the

process. For the Fourier flexible form and polynomials, K = 3 and L = 2 is used.375

Remark 3. The B&R-clust method involves an additional tuning parameter (θγ∗ in Section A.3
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in the supplementary material) to mange the B-spline-like smoothing. According to the simulation

results in Breitung and Roling [2015], the choice of θγ∗ is sensitive to the sample size. In all our

simulations, comparisons are made with the optimal choice of B&R-clust for each pair of θ and

λ1. The optimal θγ∗ is chosen in [0, 100] that minimizes AIC. It should be noted that by involving380

an additional parameter, the B&R-clust method is much more time-consuming than our proposed

method, F-clust. This additional parameter also tends to make it difficult to find the optimal values

for other tuning parameters by increasing the dimension of the parameter space by one.

Remark 4. In general, Fourier-based methods are much faster than other methods based on B&R’s

nonparametric MIDAS estimation. This is because our the Fourier flexible form and polynomials385

reduces the number of parameters from m to q+2K+L+1. Small values of K and L are generally

acceptable. This makes the Fourier-based clustering computationally fast, when m is much larger

than K and L.

3.3.1 Clustering Performance

This section explores the clustering accuracy of the proposed method and B&R-clust over a390

range of θ and λ1. As measures of clustering accuracy, the Rand index [Rand, 1971], the adjusted

Rand index (ARI) [Hubert and Arabie, 1985], Jaccard Index [Jaccard, 1912], the estimated number

of groups Ĝ, and the median of RMSE of γ̂ are presented. In particular, the first three measures

(Rand, ARI, and Jaccard) assess the similarity of the estimated clusters and the true clusters,

and defined as Rand =
TP + TN

TP + TN + FP + FN
, ARI =

Rand− E(Rand)

max(Rand)− E(Rand)
, and Jaccard =395

TP

TP + FP + FN
. Here, TP, TN, FP, and FN indicate true positives, true negatives, false positives,

and false negatives, respectively. The estimated number of clusters and median RMSE of estimated

γ̂ are also presented. The RMSE of F-clust is calculated as RMSE =
√
n−1

∑n
i=1 ‖M′γ̂i − γ∗i ‖22;

200 Monte Carlo samples are generated to evaluate performance.

Table 3 reports clustering indexes, the number of clusters, and medians of RMSE of estimated400

γ, for T = 100, m = 20, and α1 = 0.4. When θ = 2, B&R-clust reveals much better clustering per-

formance than our method in general. In particular, B&R-clust presents almost perfect clustering,

when λ1 exceeds 2.5. On the contrary, our method exhibits poor clustering performance; the Rand

and Jaccard indexes for our method are about half of that of B&R-clust, and the ARI is almost
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Table 3: The Influence of Tuning Parameters (θ and λ1) on the Clustering Performance
θ λ1 Method Rand ARI Jaccard Clusters RMSE λ1,BIC

2

1
F-clust 0.531 0.030 0.026 26.45 0.5246

B&R-clust 0.530 0.756 0.027 27.05 0.4270

1.5
F-clust 0.545 0.057 0.059 23.62 0.5741

B&R-clust 0.950 0.899 0.899 3.57 0.5984

2
F-clust 0.526 0.020 0.021 26.32 0.6197

B&R-clust 0.950 0.899 0.899 3.63 0.7630

2.5
F-clust 0.483 0.000 0.483 1.00 0.6620

B&R-clust 0.995 0.989 0.989 2.17 0.8954

3
F-clust 0.517 0.007 0.517 1.07 0.6937

B&R-clust 0.998 0.996 0.996 2.05 1.0139

3.5
F-clust 0.483 0.000 0.483 1.00 0.7408

B&R-clust 0.999 0.998 0.998 2.01 1.1296

4
F-clust 0.483 0.000 0.480 1.20 0.7676

B&R-clust 0.995 0.989 0.989 2.12 1.2880

4.5
F-clust 0.483 0.000 0.483 1.00 0.8055

B&R-clust 0.984 0.967 0.966 2.47 1.3130

BIC
F-clust 0.498 0.029 0.497 1.06 0.7094 3.157

B&R-clust 0.951 0.905 0.931 2.51 0.8385 2.226

2.5

1
F-clust 0.671 0.326 0.319 13.52 0.5308

B&R-clust 0.962 0.924 0.922 3.19 0.4368

1.5
F-clust 0.906 0.810 0.805 5.43 0.5789

B&R-clust 0.985 0.983 0.966 2.13 0.6120

2
F-clust 0.968 0.935 0.933 3.00 0.6321

B&R-clust 0.998 0.996 0.995 2.06 0.7533

2.5
F-clust 0.999 0.998 0.998 2.01 0.6618

B&R-clust 1.000 1.000 1.000 2.00 0.8597

3
F-clust 1.000 1.000 1.000 2.00 0.6897

B&R-clust 1.000 1.000 1.000 2.00 0.9593

3.5
F-clust 1.000 1.000 1.000 2.00 0.7325

B&R-clust 1.000 1.000 1.000 2.00 1.0465

4
F-clust 1.000 1.000 1.000 2.00 0.7736

B&R-clust 1.000 1.000 1.000 2.00 1.1210

4.5
F-clust 1.000 1.000 1.000 2.00 0.8146

B&R-clust 1.000 1.000 1.000 2.00 1.1837

BIC
F-clust 0.998 0.996 0.996 2.05 0.6534 2.190

B&R-clust 0.994 0.987 0.987 2.18 0.4388 1.107
200 MC samples, T = 100, α1 = 0.4, m = 20.
Each cell in the “RMSE” column reports the median of RMSEs of 200 MC samples, which is further multiplied by 100.
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zero. Nonetheless, it is interestig that in terms of RMSE, our method still is comparable or some-405

times better than B&R-clust. However, when θ = 2.5, with a proper choice of tuning parameter

λ1, the two clustering methods seem to have similar clustering performance. In particular, when

λ1 exceeds 1.5, both methods result in almost perfect clustering. RMSEs seem to be comparable

as well.

Two conclusions can be drawn from this simulation exercise. One is that choosing the right410

range of tuning parameters affects the result greatly. The other is that upon the right choice of

tuning parameters, both methods lead to reliable clusters, and they both estimate the coefficients

quite precisely.

3.3.2 Selection of Tuning Parameters

The clustering performance shown above raises the need to carefully choose the tuning param-415

eters, θ and λ1, as they affect the clustering performance considerably. In particular, when θ = 2,

our clustering method does not work well for the simulation settings we considered, no matter what

λ1 is. Therefore, it is important for users to make a wise choice of θ. Due to the limited knowledge

about the true groups in practice, the BIC alone cannot be the right guide to choose the parame-

ters appropriately. In this section, we shall propose a strategy to select the tuning parameters by420

calculating the globally convex interval.

Let c∗θ(λ1) be the minimal eigenvalue of the corresponding design matrix W (Π∗ ⊗ Ip)/n, where

Π∗ contains the estimated group information with the given parameters. Note that Π∗ is similar to

Π, except that it is built with estimated groups from data rather than the true groups. Following

the arguments in Breheny and Huang [2011], it can be shown that a subset of the globally convex425

regions of θ and λ1 is given by λ1 ≥ λ∗1 and θ that satisfy:

λ∗1 = inf{λ1 : θ > 1/c∗θ(λ1)} if the MCP penalty is used,

λ∗1 = inf{λ1 : θ > 1 + 1/c∗θ(λ1)} if the SCAD panelty is used.

(10)

Here is one strategy to find a convex region:

Step 1 For a given θ, choose λ1 that minimizes BIC. Denote it as λ1,BIC .
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Table 4: Selection of λ1 given θ
Sample θ = 2 θ > 2

λ1,BIC
1 4.5 3.5
2 5.0 4.0

c∗θ(λ1,BIC)
1 0.1452 0.0681
2 0.1420 0.0694

Globally Convex Interval of θ
1 (6.89,∞) (14.69,∞)
2 (7.04,∞) (14.41,∞)

Step 2 Find c∗θ(λ1,BIC) and λ∗1.

Step 3 Check if λ1 > λ∗1 and θ satisfy (10). If not, increase the value of θ and go back to Step 1.430

Table 4 presents examples of subsets of convex intervals for an MCP penalty, determined from the

simulation settings in Section 3.3.1. Two random samples are considered.

Let us take sample 1 as an example. When θ = 2, the BIC-chosen λ1 is 4.5, and the subset of

the globally convex interval for θ is calculated as (6.89,∞). Since θ is not in this region, increase

the value of θ. Repeat the process with θ=2.1. The convex interval for θ is (14.68,∞), which435

does not include θ. We need to increase θ again. As a matter of fact, for our simulation setting,

the clustering results was the same for all θ = 2.1, 2.2, . . . , 16, which successfully identify the true

clusters. The design matrices are also the same as a result, which leads to the (almost) same choice

of λ1,BIC and c∗θ(λ1,BIC). Therefore, for this dataset, sample 1, as long as θ is greater 2, we would

have an optimal clustering results with a BIC-chosen λ1. This observation is consistent with our440

simulation results. Our method performed well when θ > 2 but not when θ = 2.

3.3.3 Comparison of the three clustering methods

This section compares the three clustering methods (F-clust, B&R-clust, and Fourier-SSP) and

the subject-wise nonparametric MIDAS using the Fourier flexible form and polynomials (F-noclust).

These methods are compared in terms of the accuracy for parameter estimation in RMSE and for445

forecasting in RMSFE. For F-clust and B&R-clust, θ = 2.5 is considered, following the suggestion in

Section 3.3.2. The frequency ratios m selected in Table 5 are 20 and 40 to save workload on B&R’s

method. 250 samples are generated in MC simulation. Other than that, the sample size T and

the scale α1 of weights are the same as those considered in Sections 2.2 and 3.3.1. In Fourier-SSP
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method, the maximum number of groups is fixed as two for the grid search to save the calculation450

load, taking advantage of prior knowledge of the true number of clusters. However, in practice, it

could be a problem if this number is improperly chosen.

Table 5: Parameter Estimation Accuracy in a Panel Setting
m 20 40

α1 Method T 100 200 400 100 200 400

0.2

F-clust 0.4031 0.3466 0.3059 0.1587 0.1442 0.1304
B&R-clust 0.3945 0.3279 0.2261 0.1487 0.1103 0.1005

Fourier-SSP 9.6804 8.4929 7.9253 8.8707 7.5578 6.2652
F-noclust 8.2571 5.5480 3.7683 13.7938 8.4324 5.5765

0.3

F-clust 0.5163 0.4691 0.4315 0.2152 0.2012 0.1828
B&R-clust 0.4306 0.3531 0.2404 0.1670 0.1221 0.0922

Fourier-SSP 7.4175 6.8505 6.2241 7.2194 5.8779 4.3612
F-noclust 8.2573 5.5478 3.7685 13.7938 8.3948 5.5765

0.4

F-clust 0.6392 0.5966 0.5558 0.2744 0.2603 0.2145
B&R-clust 0.4496 0.3663 0.2482 0.1789 0.1364 0.0959

Fourier-SSP 5.8207 5.4699 5.1157 5.8455 4.8590 4.6615
F-noclust 8.2573 5.5478 3.7685 13.7938 8.3948 5.5765

Each cell reports the median of RMSEs of 250 MC samples, which is further multiplied by 100.

Table 5 presents median RMSEs of γ̂. In particular, the RMSE of all Fourier-based methods are

calculated as RMSE =
√
n−1

∑n
i=1 ‖M′β̂i − β

∗
i ‖22. Measures of clustering accuracy are not pre-

sented in this table, because all three clustering methods have perfectly identified the true clusters455

using BIC. In terms of estimation accuracy, F-clust and B&R-clust tend to outperform Fourier-

SSP and the subject-level linear regression. Fourier-SSP and the subject-level linear regression do

become more accurate as the sample size increases, but not to the extent that they exceed the ac-

curacy of the other two methods based on the penalized regression with (9). The B&R-clust seems

to have the best performance for all settings, while our approach is quite close to the B&R-clust.460

All three cluster-based method tend to improve as the scale α1 increases, whereas F-noclust is not

affected. This is consistent with the results in Table 5, where Fourier method is not affected much

by a different α1. In contrast, the three cluster-based methods tend to perform better if the signal

is stronger.

Computation is the fastest in F-noclust since it does not involve the penalized optimization.465

F-clust is the next fastest method, followed by Fourier-SSPxi. B&R-clust is the slowest, taking

xiIn our simulations, these two methods have similar computation time. This is because we limit the maximum
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at least three times the computation time of our method. F-noclust does not utilize the group

information, and parameter estimation tends to be less accurate than in other methods, especially

when the sample size T is smaller or the frequency ratio m is larger. The quality does get better

at a faster rate than Fourier-SSP as T increases, but to achieve the same amount of accuracy as470

F-clust or B&R cluster, one would need T � 400, which is often not possible in practice. When T

is relatively small for a given m, using the neighbor information in the same cluster can be one way

to improve the quality of the parameter estimation. Therefore, our method (F-clust) successfully

identifies true clusters and save computation time substantially, without loosing too much accuracy

in parameter estimation.475

Table 6: One-Step-Ahead Forecasting Accuracy in a Panel Setting
m 20 40

α1 Method T 100 200 400 100 200 400

0.2

F-clust 0.7700 0.7437 0.7164 0.7591 0.7173 0.7081
B&R-clust 0.9942 0.7925 0.7214 0.7781 0.7336 0.7139

Fourier-SSP 2.5779 2.6228 2.7425 2.6582 2.5276 2.4786
F-noclust 0.1619 0.1401 0.1319 0.2916 0.1617 0.1398

0.3

F-clust 0.7911 0.7591 0.7192 0.7836 0.7150 0.7051
B&R-clust 0.9937 0.8214 0.7197 0.8010 0.7243 0.7144

Fourier-SSP 2.4774 2.4952 2.5131 2.5103 2.3803 2.3066
F-noclust 0.1619 0.1401 0.1319 0.2916 0.1621 0.1398

0.4

F-clust 0.8072 0.7722 0.7290 0.8058 0.7252 0.7176
B&R-clust 1.0281 0.8336 0.7289 0.8166 0.7277 0.7257

Fourier-SSP 2.2377 2.2315 2.2493 2.2844 2.1698 2.0982
F-noclust 0.1619 0.1401 0.1319 0.2916 0.1621 0.1398

Each cell reports the median of RMSFEs of 250 MC samples.

Table 6 presents the median RMSFEs of the one-step-ahead forecast. The RMSFEs are com-

puted in a similar way as presented in Section 2.2, replacing β̂∗ with the one obtained from the

penalized regression (9), and RMSFE =
√

(nT/2)−1
∑T/2
k=1

∑n
j=1(ŷj,T/2+h+k − yj,T/2+h+k)2. It is

worth noting that F-noclust outperforms all the cluster-based approaches. This is somewhat ex-

pected, as β̂∗ from the subject-level regression is supposed to be the most efficient estimator of480

β∗ among all unbiased estimators under our set of assumptions. Nonetheless, F-clust and B&R-

clust provide reasonably accurate forecast compared to the Fourier-SSP method. This observation

demonstrates that our penalty functions in (9) may perform better than SSP’s penalty functions,

number of groups of Fourier-SSP to 2, utilizing the true group information, which saves the computation time
considerably. In reality, our method is faster when the true group information cannot be used.
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both in terms of estimation and forecast accuracy in a setting similar to ours.

Overall, if one is interested in identifying clusters in a panel MIDAS data without prior knowl-485

edge on group structures, it seems that our method performs reasonably well without requiring too

heavy computations.

4 Heterogeneity in Labor Market Dynamics across States: Through the Lens of a

Mixed-Frequency Okun’s Law Model

With the new method, we explore the heterogeneity in labor market dynamics across states490

through the lens of a mixed-frequency Okun’s law model.

4.1 Panel Data of State-Level Labor Markets and Model Description

Okun’s law refers to the empirical negative correlation between output growth and unemploy-

ment rate. A popular specification often adopted in the literature (e.g., Knotek II [2007]) is the

following. Let ut be the first-differenced unemployment rate and yt be the growth rates of GDP.495

Okun’s law is a linear relationship between these two variables

ut = δ + αyt + εt,

where δ is a constant, εt is an error term and the coefficient α has a negative sign.xii

It has been observed that an Okun’s law model might encounter difficulties in dealing with a

sudden and abrupt rise in the unemployment rate due to a burst of job losses at the inception of

an economic downturn (e.g., Lee [2000], Moazzami and Dadgostar [2011], Kargı [2016]). In other500

words, an Okun’s law model with GDP growth as the sole explanatory variable is likely to have

difficulties in explaining the nonlinear feature of unemployment dynamics. Weekly initial claims

have the highest frequency among the publicly available labor market indicators, and thus can

capture the magnitude of job loss in a timely manner. In this regard, the Okun’s law model with

weekly initial claims can better capture the non-linearity in unemployment dynamics and also can505

be used to nowcast the unemployment rate on a weekly basis in real time.

xiiThis specification is often referred to as the differenced version of Okun’s law.
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The variables that we use for the mixed-frequency Okun’s law model are the quarterly growth

rate of log GDP in state i in quarter t (yi,t), the first-differenced unemployment rate of state i in

quarter t (ui,t), and the log of initial claims in week j of quarter t in state i (xi,t,j).
xiii

We consider 50 states and the District of Columbia, a total 51 cross-section units (or subjects).xiv510

The sample period is from 2005 to the second quarter of 2018, as the quarterly real GDP at the

state level is available from 2005.

The mixed-frequency Okun’s law model is specified as follows:

ui,t = δi + αiyi,t + x′i,tβ
∗
i + εi,t,

where xi,t = (xi,t,1, · · · , xi,t,mt
)′ is the collection of weekly initial claims of the corresponding quar-

ter. One complication of the mixed-frequency Okun’s law model is that the distributed lag structure

of weekly initial claims coefficient β∗i is not well defined, as a quarter has a different number of

weeks ranging from 12 to 14. In this case, the construction of a MIDAS model usually requires a

more complicated parameterization to cope with these irregular frequencies. Notably, our method

does not require such a procedure. The proposed MIDAS model can flexibly handle the changing

number of MIDAS parameters, as the algorithm allows the Fourier transformation matrix Mi,t to

vary over time as noted in Remark 1. The Fourier-transformed log initial claims can be written as

x̃i,t = Mi,txi,t, and now the model is re-specified as follows:

ui,t = δi + αiyi,t + x̃′i,tβi + εi,t,

where βi = (βi,1, · · · , βi,2K+L+1)′ and L and K are the number of parameters in Fourier approxi-

mation. We cluster states based on αi and βi, as these parameters capture the dynamic features

of unemployment in state i. States that share similar values for (αi,β
′
i) are allocated to the same515

group.

xiiiThe state-level GDP growth is from Bureau of Economic Analysis, the state-level unemployment rate is from
Local Area Unemployment Statistics by Bureau of Labor Statistics, and the state-level initial claims are from Depart
of Labor. We seasonally adjust initial claims using seasonal-trend decomposition using LOESS (STL), and use the
seasonally adjusted claims for the estimation of Okun’s law model.
xivIn some states, there is a small number of weeks when the initial claims data are not released, due, for instance,

to the shutdown of a local agency collecting the data.
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In our clustering algorithm, L = 1 and K = 2 are chosen to effectively summarize the high-

frequency information.xv This selection ensures that the total number of parameters is smaller than

in the conventional MIDAS model. For this dataset, we could not find a global convex area for θ

and λ1. Instead, we conducted a grid search on a range of λ1 for each θ = 2, 3, 5, 8, 10. Among the520

values on the grid, we found that θ = 2 and λ1 = 2.6 minimize both AIC and BIC criteria and

therefore our reported results are based on these values.

4.2 Clustering Analysis for the State-Level Labor Markets in the United

States

Table 7 summarizes estimation results. The algorithm identifies four clusters. There are 24525

states in cluster 1, 19 states in cluster 2, 7 states in cluster 3, and 1 state in cluster 4. Clusters 1, 2,

and 3 account for 47.0%, 36.4%, and 15.3% of national payroll employment, respectively. Cluster 4

consists of a single state—Louisiana —and constitutes 1.4% of aggregate employment. The clusters

are determined jointly by the coefficients on GDP growth and the coefficients on log weekly initial

claims. Based on the absolute size of coefficients on GDP growth and log initial claims (columns530

5 and 6 of Table 7), the labor markets of cluster 3 are the most cyclically sensitive, while those in

clusters 2 and 1 are moderately and weakly cyclical, respectively. Quite differently, the coefficient

on GDP growth in cluster 4 is close to zero and statistically insignificant, but the sum of coefficients

on log initial claims is positive and statistically significant: hence, in cluster 4 GDP growth rate does

not affect the unemployment rate, while initial claims do. The clusters are further distinguished535

by the pattern of coefficients on log weekly initial claims. The estimated trajectories within the

quarter are plotted in Figure 1, and summarized in Column 7 of Table 7. These trajectories are

quite distinct across clusters as shown in Figure 1. The coefficients exhibit an uptrend in cluster

1, while those in cluster 2 and 3 show “W ” and “M ” shapes, respectively. The coefficients of

Cluster 4 show an “N ” shape. This result suggests that both the trajectory and the size of these540

coefficients are important in distinguishing clusters.

The large coefficients on certain weeks’ initial claims suggest that those who file for UI benefits

during these weeks are more likely to raise the state’s unemployment rate than others. This might

xvThe clustering results were similar to unreported results with L = 2 and K = 3.

30



Table 7: Summary of identified clusters
Number Member Emp. GDP Sum of IC IC coeff.’s

of states states share Coeff. Coeff. Shape

Cluster 1 24 South Carolina, North Carolina, Florida, 47.0% -0.141 0.862 Upward

Wisconsin, Colorado, Rhode Island, (0.00925) sloping

Iowa, South Dakota, Kansas, North Dakota,

Hawaii, Indiana, Wyoming, Oklahoma,

New Hampshire, New Jersey, Maine,

Michigan, Vermont, Nebraska,

California, Delaware, New York, Alaska

Cluster 2 19 Georgia, Oregon, Ohio, Utah, Tennessee, 36.4% -0.203 0.972 W-shape

Texas, New Mexico, West Virginia, (0.0150)

Missouri, Mississippi, Arkansas,

Massachusetts, Kentucky,

District of Columbia, Massachusetts,

Idaho, Pennsylvania, Montana, Connecticut

Cluster 3 7 Alabama, Arizona, Illinois, Washington, 15.3% -0.313 1.468 M-shape

Nevada, Minnesota, Virginia (0.0280)

Cluster 4 1 Louisiana 1.4% 0.0250 1.244 N-shape

(0.0625)

Note to Table 7: The abbreviation ”Emp. share” refers to the share out of aggregate payroll employment; ”GDP
Coeff.” refers to the coefficient on GDP growth; ”IC coeff’s shape refers to the shape of coefficients on the weekly
initial claims through the corresponding quarter. Numbers in the parentheses are the standard errors.

be related hirings and layoffs practices and the timing of regular employment turnovers in different

states or regions. Layoffs related to temporary hirings might be concentrated in particular weeks in545

some states. Workers previously hired by the firms who periodically lay off and recall their workers

typically file for UI claims during specific weeks of quarter and are pretty quickly re-employed.

On the other hand, those who file for UI benefits outside these weeks might be more likely to be

permanent job losers who tend to stay unemployed for a longer period. Therefore, the initial claims

filed by these workers tend to be more strongly correlated with the unemployment rate than those550

filed by temporary job losers. As an example, in cluster 2 more permanent job losers might file for

UI claims during weeks 1, 5, 6, 11 and 12 than in other weeks. Quite differently, in cluster 1 where

the coefficients on initial claims exhibit an upward trend, temporary layoffs might be concentrated

early in the quarter. In synthesis, each cluster’s coefficients pattern might reflect these institutional

factors. Hence, the different shapes of coefficients can be interpreted as the outcomes of labor555

market conventions that differ across clusters.xvi

xviThe large positive coefficients observed on week 5,6, 11, and 12 might also be related to the reference week of
Current Population Survey that usually falls in the second week of each month. The number of those file for the
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Figure 1: Coefficients on log initial claims by cluster
Note to Figure 1: Authors’ calculations.The shaded area denotes the 95% confidence intervals.

Figure 2 displays the geographical locations of clusters. Cluster 1, denoted as light blue, is

composed of (1) agricultural states in the Midwest region, (2) manufacturing states in the East-

north central region, and (3) states in the Northeast. Far from the states in cluster 1, however,

California, Alaska, Florida, and North and South Carolina also belong to Cluster 1.xvii Cluster560

2 denoted as pink is broadly composed of (1) agricultural states in the West (mountain region),

(2) states in the central South region, and (3) manufacturing states in the middle Atlantic region

of the Northeast. Overall, states that belong to the same cluster are adjacent with each other

in cluster 1 and 2. Quite differently, states in cluster 3 denoted as orange are widely dispersed.

UI claims in the first half of month might be highly correlated with a change in the unemployment rate captured
by the survey, if the recent filing of UI claims make the survey respondent more likely to report unemployment as
their labor force status. However, this feature is not clearly observed in other clusters. Therefore, the pattern of
coefficients on initial claims is less likely to be the outcome of reference-week effect.
xviiWe follow the Census Bureau’s division of regions.
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This observation suggests that the geographical proximity is not a necessary condition for the565

identification of a cluster, but is only partially correlated with cluster membership. This might

be because adjacent states often share similar structural characteristics, such as available natural

resources, oil production, and industrial structure.

Figure 2: States by cluster (cluster 1=light blue, cluster 2=pink, cluster 3 = orange, cluster 4=red)
Note to Figure 2: Authors’ calculations.

We further relate the clusters to observable state characteristics in order to find an economic

interpretation. To this end, we consider five variables: (1) the small firms share, (2) the employment570

share of manufacturing, (3) the employment share of finance industry, (4) the GDP share of oil

production, and (5) the fraction of long-term unemployment on total unemployment. The first

four characteristics are considered in Hamilton and Owyang [2012] as possible explanations for

heterogeneous regional business cycles.xviii We also include the share of long-term unemployment,

xviiiFollowing this study, we also analyze the clusters based on these attributes. The state-level data of four variables
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Table 8: Features of each cluster
Small-firm Manufacturing Finance Oil- Long-term

share intensive intensive producing unemployment

Cluster 1 0.54 0.46 0.46 0.17 0.38

Cluster 2 0.26 0.53 0.37 0.26 0.63

Cluster 3 0.14 0.43 0.43 0 0.43

Cluster 4 1 0 0 1 0

Note to Table 8: Authors’ calculations. Numbers in red are larger than 0.5; those in blue are between 0.4 and
0.5.

a component that is likely to reflect the structural unemployment.xix The unemployment rate of575

a state where the share of long-term unemployment is high might be less responsive to changes in

labor demand.

We find that the four clusters are moderately distinct in these five observable dimensions. Table

8 and Figure 3 summarize the observable features of each cluster. The feature of each cluster is

computed from the fraction of states in the cluster whose particular observable characteristic is580

more prominent than the average of all states. For example, according to the second column of

Table 8, the fraction of states in cluster 1 whose small firms share is larger than the average of all

states is 0.54, and that in cluster 2 is 0.26.

Cluster 1 is summarily described as small-firm/manufacturing/finance intensive. More than half

of the states in this cluster have the share of small firms higher than the average of all states. At585

the same time, a little less than a half of the states in this cluster have above average employment

share of manufacturing.

Cluster 2 is characterized as long-term-unemployment prone and manufacturing intensive. About

60% of states in this cluster have a higher than average share of long-term unemployment, and a

little more than half of the states have manufacturing shares in employment above the average.590

Cluster 3 is characterized as manufacturing-finance intensive and long-term unemployment

prone. Three out of seven states have larger than average fraction of employment in manufacturing

and finance. In addition, the three states have above-average long-term unemployment shares.

Louisiana (cluster 4) is an oil-producing state, whose share of small firms is larger than average.

Summing up, clusters are heterogeneous in multiple dimensions, characterized by differences595

are from Hamilton and Owyang [2012].
xixThe fraction is calculated based on the micro data from the Current Population Survey (CPS).
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Figure 3: Features of each cluster
Note to Figure 3: Authors’ calculations.

in several observable attributes, as shown in Figure 3. In synthesis, the empirical application

demonstrates that our algorithm is be able to reveal meaningful heterogeneity in labor-market

dynamics across states without requiring prior knowledge, which in many cases derives from data

limitations or from theories lacking empirical support.

5 Conclusion600

This paper proposed a new clustering method in a panel MIDAS setting, grouping subjects

with similar MIDAS coefficients. The clustering is purely data driven, and relies on appropriate

adaptation of an existing penalized regression approach. The major advantage of our method is

that it does not require prior knowledge of true group membership, not even of the number of

groups. A penalized regression already requires at least two tuning parameters, which are often605

difficult to choose, yet this choice is crucial, as we show in our simulations. In our nonparametric

MIDAS specification, based on the Fourier flexible form and polynomials, only a single tuning

parameter is required. We provide a strategy for choosing the tuning parameter based on a convex

region approach. We show that our proposed clustering method works well both asymptotically
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and in finite samples. In addition, our non-parametric approach is very simple and fast, and610

leads to parameter estimates that are as accurate as competing methods, in many cases even more

accurate. As an empirical example, we provide an application to labor market dynamics at state

level in the United States. The application, based on a mixed frequency Okun’s law model, allows

us to categorize the states in four meaningful clusters that correspond to relevant and measurable

differences along different dimensions.615
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This supplementary material consists of two parts: Section A consists of details of algorithms

used in the main paper; and Section B presents all proofs.

A Algorithms

This section contains details of algorithms introduced in the main paper. Section A.1 introduce

details of B&R’s nonparametric MIDAS in our setting in Section 2. Section A.2 present our clus-

tering algorithm (F-clust). Details on how to solve the optimization problem in (9) in our setting is

presented using the alternating direction method of multipliers (ADMM) algorithm. The proposed

algorithm is also shown to be convergent. Sections A.3 and A.4 present the details of the two

competing clustering methods. In particular, Section A.3 introduces how to combine the penalized

regression approach with objective function (9) and the B&R’s method (B&R-clust). Section A.4

present the algorithm combining Su’s penalty function and the Fourier transformation for MIDAS

(Fourier-Su). Section A.5 presents the algorithm to exclude a part of parameters from clustering.

A.1 Breitung and Roling [2015]’s Nonparametric MIDAS

The nonparametric MIDAS in Breitung and Roling [2015] is based on the discrete form of the

cubic smooth spline. The least-squares objective function is penalized by the sum of the second

*Address of correspondence: Yeonwoo Rho, Department of Mathematical Sciences, Michigan Technological
University, Houghton, MI 49931, USA. (yrho@mtu.edu)

Emails: Y. Rho (yrho@mtu.edu), Y. Liu (yliu26@mtu.edu), and H. J. Ahn (HieJoo.Ahn@frb.gov)
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difference of weights to balance the goodness of fit and the smoothness of weights. Assume that

the MIDAS model is shown in (1). The penalized least-squares objective function is

QBR =

T∑
t=1

(
yt+h − α0 −

m−1∑
i=0

xt,iβ
∗
i

)2

+ λBR

m∑
i=2

(
52β∗i

)2
,

where 52β∗i = (β∗i − 2β∗i−1 + β∗i−2) indicates the second difference of weights. The smoothed

least-squares (SLS) estimator [Breitung and Roling, 2015] becomes

β̂
∗
BR = arg min

β∗
{(y −Xβ∗)′(y −Xβ∗) + λBR(Dβ∗)′Dβ∗} ,

where

D(m−2)×(m+1) =



0 1 −2 1 0 · · · 0

0 0 1 −2 1 · · · 0

...
...

...
...

...
...

...

0 0 0 · · · 1 −2 1


.

The tuning parameter λBR can be chosen using an information criteria. For example, Breitung

and Roling [2015] proposed to use the modified Akaike information criterion (AIC),

AICλBR = log {(y − ŷBR)′(y − ŷBR)}+
2(sλBR + 1)

T − sλBR + 2
,

where ŷBR = X(X′X + λBRD
′D)−1X′y.

A.2 Clustering algorithm for the Fourier Transformed data

The optimization problem in (9) is not trivial. The alternating direction method of multipliers

(ADMM) algorithm by Boyd et al. [2011] has been successfully employed solving this optimization

problem [Ma and Huang, 2017, Zhu and Qu, 2018]. This section introduces the ADMM algorithm

in our setting and proves that it is convergent.
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By introducing ηij = γi − γj , minimizing (9) is equivalent to minimizing

Q(γ,η) =
1

2
||y −Wγ||22 +

∑
1≤i<j≤n

ρ(ηij , λ1) subject to ηij = γi − γj ,

where η = (η′12, . . . ,η
′
n−1,n)′. Following Boyd et al. [2011], this constrained optimization problem

can be solved using a variant of the augmented Lagrangian

Qλ2
(γ,η, ξ) =

1

2
||y −Wγ||22 +

∑
i<j

ρ(ηij , λ1) +
λ2
2

∑
i<j

||γi − γj − ηij ||22 +
∑
i<j

ξ′ij(γi − γj − ηij),

(A.1)

where ξ = (ξ′12, ξ
′
13, . . . , ξ

′
n−1,n)′ and ξij are p-vectors of Lagrangian multipliers. As proposed by

Boyd et al. [2011], the optimization problem in (A.1) can be solved using the alternating direction

method of multipliers (ADMM) algorithm. At the (s+1)-th step of the ADMM algorithm, estimated

parameters γs+1, ηs+1 and ξs+1 are updated as

γs+1 = arg min
γ
Qλ2

(γ,ηs, ξs),

ηs+1 = arg min
η
Qλ2

(γs+1,η, ξs),

ξs+1
ij = ξsij + λ2(ηs+1

ij − γ
s+1
i + γs+1

j ),

(A.2)

where ηs and ξs are the estimates in the s-th iteration. By collecting terms related to γ, the first

function in (A.2) is equivalent to minimizing

Qγλ2
(γ,η, ξ) =

1

2
‖y −Wγ‖22 +

λ2
2
‖Dγ − (η + ξ/λ2)‖22,

where Dij = (ei − ej)′ ⊗ Ip, D = (D′12, D
′
13, · · · , D′n−1,n)′, ei is an n-dimension vector with the

i-th element as one and the rest as zeros, and Ip is an identity matrix with rank p. Therefore,

γs+1 = (W ′W + λ2D
′D)
−1 {W ′y + λ2D

′(ηs + ξs/λ2)}.

The MCP is shown to be nearly unbiased and is applicable here to update ηs+1 [Zhu and

Qu, 2018]. The penalty function of MCP is ρ(γi − γj , λ1) = ρθ(‖γi − γj‖2, λ1) where ρθ(x,
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t) = t
∫ x
0

(1− u
θt )+du. As a consequence, when the MCP is selected, ηs+1

ij can be updated by

ηs+1
ij =


η̃s+1
ij if ‖η̃s+1

ij ‖2 ≥ θλ1,
θλ2

θλ2 − 1

(
1− λ1/λ2

‖η̃s+1
ij ‖2

)
+

η̃s+1
ij if ‖η̃s+1

ij ‖2 < θλ1,

where η̃s+1
ij = γs+1

i −γs+1
j −ξsij/λ2 and θ > 1/λ2 for the global convexity of the second minimization

function in (A.2) [Wang et al., 2018, Forthcoming].

If the minimization function of ηs+1 is non-convex, assigning appropriate initial values becomes

essential. A proper start will lead to an ideal solution. Inspired by Zhu and Qu [2018], the clustering

method can be initialized as shown in the following algorithm.

Algorithm 1: F-clust Algorithm

Initialization:

ξ0 = 0, γ0 = (W ′W )
−1

(W ′y) , η0 = arg minη Qλ2
(γ,η, ξ), where λ2 and θ > 1/λ2 are

fixed.

for s = 0, 1, 2, · · · do
γs+1 = (W ′W + λ2D

′D)
−1 {W ′y + λ2D

′(ηs + ξs/λ2)}.

ηs+1 = arg minη Qλ2
(γs+1,η, ξs),

ξs+1
ij = ξsij + λ2(ηs+1

ij − γ
s+1
i + γs+1

j ), for all 1 ≤ i < j ≤ n.

if the stopping criteria are true then

Break

end

end

The estimated number of groups, Ĝ, can be obtained by η. If γ̂i = γ̂j , γi and γj are expected

to be in the same cluster. However, as a penalty ηij has been imposed in the clustering algorithm,

the equality of two estimated parameters is not achievable. As a result, the MCP penalty is utilized

on η̂ij . Two parameters γi and γj are clustered in the same group if η̂ij = 0.

In Algorithm 1, the stopping criteria are defined as the following. Let κs+1
ij = γs+1

i −γs+1
j −ηs+1

ij ,

κ = (κ′12, · · · ,κ′n−1,n)′ and τ s+1
k = −λ2{

∑
i=k(ηs+1

ij −ηsij)−
∑
j=k(ηs+1

ij −ηsij)}, τ = (τ 1, · · · , τn)′.

At any step s∗, if for some small values εκ and ετ , ‖κs∗‖2 ≤ εκ and ‖τ s∗‖2 ≤ ετ , the algorithm
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stops. Following Zhu and Qu [2018], defineεκ and ετ as

εκ =
√
npεabs + εrel‖D′ξs

∗
‖2, ετ =

√
|I|pεabs + εrel max{‖Dηs

∗
‖2, ‖ηs

∗
‖2},

where I = {(i, j) : 1 ≤ i < j ≤ n}, |I| indicates the cardinality of I. Here, εabs and εrel are

predetermined small values.

Proposition 1. The above clustering algorithm ensures convergence, that is, ‖κs+1‖22 → 0 and ‖τ s+1‖22 →

0, as s→∞.

Proof of Proposition 1. ‖κs+1‖22
s→∞−−−→ 0 can be shown similarly to the proof of Proposition 1 in

Ma and Huang [2017]. The proof of ‖τ s+1‖22
s→∞−−−→ 0 can be done by ignoring the penalty term in

the objective function in the proof of Theorem 3.1 in Zhu and Qu [2018].

Proposition 1 demonstrates that the clustering algorithm is convergent as the number of itera-

tion, s, approaches infinity. The stopping criteria can be satisfied at some step eventually.

A.3 Comparable Clustering Methods 1: B&R-clust

Recall that in (6), the MIDAS regression model without Fourier transformation of each subject

is

yi = Ziαi +Xiβ
∗
i + εi, i = 1, · · · , n.

For more than one subject, the penal MIDAS model can be written as

yi = (Zi, Xi)

αi
β∗i

 = W̃iγ
∗
i , or y = W̃γ∗ + ε,

where W̃i = (Zi, Xi) is the raw observations, γ∗i = (αi
′,β∗

i
′)′, γ∗ = (γ∗1

′, · · · , γ∗n
′)′.

Refer to the main idea of Breitung and Roling [2015], the cubic smoothing spline penalty is

considered. The penalized objective function will be given as

Q(γ∗) =
1

2
‖y −Wγ∗‖22 +

1

2
θγ∗γ

∗′Aγ∗,
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where θγ∗ is the pre-determined smoothing parameter, A = In ⊗ (A′A). A is defined as

A(m−2)×m =



1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

...
...

...
...

...
...

0 0 · · · 1 −2 1


.

According to Zhu and Qu [2018], our goal is to solve the constrained optimization function

Qλ2
(γ∗,η, ξ) = Q(γ∗) +

∑
i<j

ρ(ηij , λ1) +
λ2
2

∑
i<j

||γ∗i − γ∗j − ηij ||22 +
∑
i<j

ξ′ij(γ
∗
i − γ∗j − ηij). (A.3)

The clustering algorithm of (A.3) is similar to Algorithm 1.

Algorithm 2: B&R-clust Algorithm

Initialization:

ξ0 = 0, γ0 =
(
W̃ ′W̃ + θγ∗A

)−1 (
W̃ ′y

)
, η0 = arg minη Qλ2

(γ,η, ξ), where λ2 and

θ > 1/λ2 are fixed.

for s = 0, 1, 2, · · · do
γs+1 = (W ′W + λ2D

′D + θγ∗A)
−1 {W ′y + λ2D

′(ηs + ξs/λ2)}.

ηs+1 = arg minη Qλ2
(γs+1,η, ξs),

ξs+1
ij = ξsij + λ2(ηs+1

ij − γ
s+1
i + γs+1

j ), for all 1 ≤ i < j ≤ n.

if the stopping criteria are true then

Break

end

end

Note that Algorithm 2 follows the same main idea of Zhu and Qu [2018]. However, in Zhu and

Qu [2018], the model introduces B-splines to approximate observations, while Algorithm 2 simply

uses all high-frequency regressors. Moreover, an additional tuning parameter, θγ∗ , is required to

be predetermined. Refer to Breitung and Roling [2015], Zhu and Qu [2018], the selection of θγ∗ is
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based on the minimum of AIC given by

AICθγ∗ =

n∑
i=1

{
log

(
‖yi −Wiγ̂i‖22

T

)
+

2 · dfi
T

}
,

where dfi = tr{Wi(W
′
iWi + θγ∗A

′A)−1W ′i}. The selection of λ1 here, is by minimizing

BICλ1
= log

(
‖y −W γ̂‖22

n

)
+

log(n)
{
Ĝ( 1

n

∑n
i=1 dfi)

}
n

.

With fixed λ1, AICθγ∗ can be obtained for different values of θγ∗ . Then, fix θγ∗ with minimum

BIC, BICλ1 can be calculated based on the determined θγ∗ .

A.4 Comparable Clustering Methods 2: Fourier-SSP

Su et al. [2016] introduced C-Lasso for clusters to identify relatively large differences between

parameters and group averages rather than the traditional Lasso for each subject to select relevant

covariates. The penalized profile likelihood (PPL) function mentioned in Su et al. [2016] is

Q(γ∗) =
1

nT

n∑
i=1

T∑
t=1

φ(wit;γ
∗
i , µ̂i(γ

∗
i )).

By introducing the group Lasso penalty, the PPL criterion function becomes

QG,λPPL = Q(γ∗) +
λPPL
N

N∑
i=1

G0∏
g=1

‖βi −αg‖2,

where λPPL is a tuning parameter. The C-Lasso estimation γ̂ and α̂, respectively. Without any

prior knowledge of the true clusters, PPL C-Lasso estimation requires a predetermination of a

reasonable maximum value, G0, of groups. An appropriate choice of (λPPL, G0) can be found by

minimizing IC based on all possible values of clusters less than G0 as long as predetermined values

of λPPL. To start the algorithm, Su et al. [2016] suggested a natural initial value as α̂(0)
g = 0 for

all g = 1, · · · , G0 and γ̂∗(0) as the quasi-maximum likelihood estimation (QMLE) of γ∗i in each

subjects. More details can be found in Su et al. [2016].
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Algorithm 3: SSP – PPL Algorithm Given G0 and λPPL

Initialization: α̂(0) = (α̂
(0)
1 , · · · , α̂(0)

G0
)
′
, γ̂∗

(0)

= (γ̂∗
(0)

1 , · · · , γ̂∗
(0)

n )
′

s.t.∑n
i=1 ‖γ̂

∗(0)
i − α̂(0)

g ‖ 6= 0 for all g = 2, · · · , G0.

for s = 1, 2, · · · do

for g = 1, 2, · · ·G0 do

Obtain the estimator (γ̂∗
(s,G)

, α̂(s)
g ) of (γ∗,αg) by minimizing the following

objective function Q
(s,g)
G,λPPL

(γ∗,αg).

if g = 1 then

Q
(s,g)
G,λPPL

(γ∗,αg) = Q(γ∗) +
λPPL
N

∑N
i=1 ‖γ∗i −αg‖

∏G
k=2 ‖γi∗

(s−1,k) −α(s−1)
k ‖ ;

else if g 6= G then

Q
(s,g)
G,λPPL

(γ∗,αg) =

Q(γ∗)+
λPPL
N

∑N
i=1 ‖γ∗i−αg‖

∏g−1
j=1 ‖γ̂

∗(s,j)
i −α(s)

j ‖
∏G
k=g+1 ‖γi∗(s−1,k)−α

(s−1)
k ‖;

else

Q
(s,g)
G,λPPL

(γ∗,αg) = Q(γ∗) +
λPPL
N

∑N
i=1 ‖γ∗i −αg‖

∏G−1
k=1 ‖γ̂

∗(s,k)
i −α(s)

k ‖ ;

end

end

if the stopping criteria are true then

Break

end

end

Su et al. [2016] provided a stopping criteria for this algorithm:

Q̂
(s−1)
G,λPPL

− Q̂(s)
G,λPPL

≤ εtl and

∑G
g=1

∥∥∥α̂(s)
g − α̂

(s−1)
g

∥∥∥2∑G
g=1

∥∥∥α̂(s−1)
g

∥∥∥2 + 0.0001
≤ εtl,

where εtl is a predetermined small value indicating the tolerance level.
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A.5 Algorithm for dropping a part of regressors in clustering

In the framework shown in Section 3, the procedure concentrates on clustering weights of Zi

and X̃i at the same time. To cluster part of weights, a selection matrix Cs is introduced∗. The

modified penalized objective function:

Q(γ) =
1

2
||y −Wγ||22 +

∑
1≤i<j≤n

ρ(Csγi − Csγj , λ1),

where Cs is a matrix of 1s and 0s that picks up the coefficient of interest. For example, if one is

interested in clustering Fourier transformed weights only, the matrix Cs is the same as D in (4).

The group-specified parameter is η̃ij = Csγi − Csγj , and the constrained optimization problem is

Qλ2(γ,η, ξ) =
1

2
||y −Wγ||22 +

∑
i<j

ρ(ηij , λ1)

+
λ2
2

∑
i<j

||Csγi − Csγj − ηij ||22 +
∑
i<j

ξ′ij(Csγi − Csγj − ηij).

Equivalently,

Qγλ2
(γ,η, ξ) =

1

2
‖y −Wγ‖22 +

λ2
2
‖D̃γ − (η + ξ/λ2)‖22,

where Dij = (ei−ej)′⊗ Ip and D̃ = (D′12C
′
s, D

′
13C

′
s, · · · , D′n−1,nC ′s)′. The corresponding algorithm

can be summarized as Algorithm 4.

B Proofs

B.1 Lemmas

Assumptions on regressors (in our setting, W ) made in Ma and Huang [2016] and related papers

can be somewhat too strong for our panel setting. For example, (C3) in Ma and Huang [2016]

assumes that each column of W , taking only the rows that correspond to the k-th group, should

be nonrandom, and the sum of squares of all its elements is assumed to be equal to the size of k-th

∗Although we do not provide a formal proof for this argument, the validity of this algorithm can be proved in a
similar manner, following Ma and Huang [2016]’s argument. To keep the paper concise, we do not present the detail
in this paper.
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Algorithm 4: F-clust excluding some coefficients from clustering

Initialization:
ξ0 = 0, γ0 = (W ′W )

−1
(W ′y) , η0 = arg minη Qλ2(γ,η, ξ), where λ2 and θ > 1/λ2 are

fixed.
for s = 0, 1, 2, · · · do

γs+1 =
(
W ′W + λ2D̃

′D̃
)−1 {

W ′y + λ2D̃
′(ηs + ξs/λ2)

}
.

ηs+1 = arg minη Qλ2(γs+1,η, ξs),
ξs+1
ij = ξsij + λ2(ηs+1

ij − Cγ
s+1
i + Cγs+1

j ), for all 1 ≤ i < j ≤ n.

if the stopping criteria are true then
Break

end

end

group, i.e., |Gk|. This type of assumption could be realistic for data involved with an experimental

design, but not suitable for panel data setting, where columns of W generally consists of random

variables. In this proof, we circumvent this issue by using the following lemmas.

Lemma 1. Suppose a random vector ε = (ε1,1, ε1,2, . . . , εn,T )′ of length nT as in (8) satisfies

Assumption 4. Let A ∈ Ra×nT be a nonrandom matrix with a positive integer a. Let Σ = A′A.

For any ζ > 0,

P
[
‖Aε‖22 > 2c̃{tr(Σ) + 2

√
tr(Σ2)ζ + 2‖Σ‖2ζ}

]
≤ e−ζ .

Proof of Lemma 1. When a = nT , this lemma is a special case of Theorem 2.1 in Hsu et al. [2012].

This can be easily seen by recognizing their µ, σ2, and α are 0, 2c̃, and (ν1,1, ν1,2, . . . , νn,T )′,

respectively.

If a < nT , a similar argument can still be used. Consider a singular value decomposition of

A = USV ′, where U and V are a× a and nT × nT orthogonal matrices, respectively. Let ρ = (ρ1,

. . . , ρa)′ denote the nonzero eigenvalues of A′A and AA′. S is an a×nT matrix, where its diagonal

elements are equal to
√
ρi for i = 1, . . . , a and all other entries are zero. Let z be a vector of a

independent standard Gaussian random variables. Since U is orthogonal, y = U ′z is also an a× 1

vector of a independent standard Gaussian random variables. Let y = (y1, . . . , ya)′. Applying

Lemma 2.4 of Hsu et al. [2012] on ‖A′z‖2 = Z ′AA′z = z′USV ′V S′U ′z = ySS′y′ =
∑a
i=1 ρiy

2
i , then

E
{

exp
(
γ‖A′z‖2

)}
≤ exp

(
‖ρ‖1γ +

‖ρ‖22γ2

1− 2‖ρ‖∞γ

)
(B.1)
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for any 0 ≤ γ < 1/(2‖ρ‖∞). For any λ ∈ R and δ ≥ 0, using similar arguments as in (2.3) and

(2.4) of Hsu et al. [2012], Assumption 4, and (B.1),

P (‖Aε‖2 > δ) ≤ exp

(
−λ

2δ

2

)
exp

{
‖ρ‖1(λ2c̃) +

‖ρ‖22(λ2c̃)2

1− 2‖ρ‖∞(λ2c̃)

}
.

Let δ = 2c̃(‖ρ‖1 + τ), λ2 = 1
c̃

1
2‖ρ‖∞

(
1−

√
‖ρ‖22

‖ρ‖22+2‖ρ‖∞τ

)
, and τ = 2

√
‖ρ‖22ζ+ 2‖ρ‖∞ζ. The desired

proof is concluded by using similar arguments as Hsu et al. [2012] and observing ‖ρ‖1 =
∑a
i=1 ρi =

tr(Σ), ‖ρ‖22 =
∑a
i=1 ρ

2
i = tr(Σ2), and ‖ρ‖∞ = maxi ρi = ‖Σ‖2.

A similar proof works for a > nT . In this case, without loss of generality, the only nonzero

element in S are the first nT diagonal elements of S. Let
√
ρi, i = 1, . . . , nT , be the nonzero

diagonal elements of S. Then ||A′z||2 =
∑nT
i=1 ρiy

2
i , where yi are independent standard Gaussian

random variables. The rest of the proof is the same.

Lemma 2. Suppose conditions of Lemma 1 hold. For any nT×np matrix W satisfying Assumption

2,

P
[
‖W ′ε‖22 > 2c̃(np+ 2

√
npζ∗ + 2ζ∗)‖W ′W‖2

∣∣∣W] ≤ e−ζ∗ and

P
[
‖Γ′W ′ε‖22 > 2c̃(Gp+ 2

√
Gpζ + 2ζ)‖Γ′W ′WΓ‖2

∣∣∣W] ≤ e−ζ
hold for any ζ∗ > 0 and ζ > 0.

Proof of Lemma 2. Fix a nT ×nP matrix W that satisfies Assumption 2. Using Lemma 1, for any

ζ∗ > 0,

P
[
‖W ′ε‖22 > 2c̃(tr(WW ′) + 2

√
tr((WW ′)2)ζ∗ + 2‖WW ′‖2ζ∗)

∣∣W] ≤ e−ζ∗ , and

P
[
‖Γ′W ′ε‖22 > 2c̃(tr(ΓWW ′Γ′) + 2

√
tr((ΓWW ′Γ′)2)ζ + 2‖ΓWW ′Γ′‖2ζ)

∣∣W] ≤ e−ζ .
Since ‖WW ′‖2 is the maximum eigenvalue of WW ′, using the fact that WW ′ is symmetric and

positive definite with rank np, it can be easily seen that λmax(WW ′) = λmax(W ′W ),

‖WW ′‖2 = ‖W ′W‖2 = ‖diag(W ′1W1, · · · ,W ′nWn)‖2 ≤ max
i
‖W ′iWi‖2, and

tr(WW ′) = tr(W ′W ) ≤ np‖W ′W‖2, tr((WW ′)2) = tr((W ′W )2) ≤ np‖W ′W‖22.
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Therefore

tr(WW ′) + 2
√

tr[(WW ′)2]ζ∗ + 2‖WW ′‖2ζ∗ ≤ (np+ 2
√
npζ∗ + 2ζ∗)‖W ′W‖2.

Similarly, ‖WΓΓ′W ′‖2 = ‖Γ′W ′WΓ‖2,

tr(WΓΓ′W ′) = tr(Γ′W ′WΓ) ≤ Gpλmax(Γ′W ′WΓ) = Gp‖Γ′W ′WΓ‖2, and

tr{(WΓΓ′W ′)2} = tr{(Γ′W ′WΓ)2} ≤ Gp{λmax(Γ′W ′WΓ)}2 = Gp‖Γ′W ′WΓ‖22.

Therefore for any ζ > 0,

tr(Γ′W ′WΓ) + 2
√

tr{(Γ′W ′WΓ)2}
√
ζ + 2‖Γ′W ′WΓ‖2ζ ≤ (Gp+ 2

√
Gpζ + 2ζ)‖Γ′W ′WΓ‖2.

As a result, given any matrix W , the inequalities in the statement have been validated.

Lemma 3. Suppose Assumptions 2 and 4 hold for W and ε. Define

Sζ =2c̃(Gp+ 2
√
Gpζ + 2ζ)gmaxmM̃

√
GpTBq,m,

Sζ∗ =2c̃(np+ 2
√
npζ∗ + 2ζ∗)mM̃

√
TBq,m

√
p,

where Bq,m = (q1/2 +m1/2(L+ 1 + 2K)), p = q + L+ 1 + 2K, M̃ = max(M1,M2,M3,M4) and c̃

given in Assumption 2 and 4, then P
[
‖W ′ε‖22 > Sζ∗

]
≤ e−ι∗ and P

[
‖Γ′W ′ε‖22 > Sζ

]
≤ e−ι where

ι = min(ζ,− log(ε))− log(2) and ι∗ = min(ζ∗,− log(ε))− log(2) for any ζ and ζ∗ in Lemma 2.

Proof of Lemma 3. Using the law of iterated expectations,

E
[
P
(
‖W ′ε‖22 > Sζ∗

∣∣W )] =P [‖W ′ε‖2 > Sζ∗ ]

=E
[
I{‖W ′ε‖22>Sζ∗}

∣∣ ‖WW ′‖2 ≤M∗
]
P (‖WW ′‖2 ≤M∗)

+ E
[
I{‖W ′ε‖22>Sζ∗}

∣∣ ‖WW ′‖2 > M∗
]
P (‖WW ′‖2 > M∗)

=P
[
‖W ′ε‖22 > Sζ∗

∣∣ ‖WW ′‖2 ≤M∗
]
P (‖WW ′‖2 ≤M∗)

+ P
[
‖W ′ε‖22 > Sζ∗

∣∣ ‖WW ′‖2 > M
]
P (‖WW ′‖2 > M∗).
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Since ‖M‖∞ ≤ m and ‖M ′‖∞ ≤ L+1+2K as all elements of M in (3) smaller than 1 in magnitude,

∥∥∥∥∥∥
∑
i∈Gg

Z ′iZi

∥∥∥∥∥∥
∞

=
∑
i∈Gg

‖Z ′iZi‖∞ ≤M1|Gg|
√
qT ,

∥∥∥∥∥∥
∑
i∈Gg

Z ′iX̃i

∥∥∥∥∥∥
∞

≤
∑
i∈Gg

‖Z ′iXi‖∞ ‖M
′‖∞ ≤M3|Gg|

√
mT (L+ 1 + 2K),

∥∥∥∥∥∥
∑
i∈Gg

X̃ ′iZi

∥∥∥∥∥∥
∞

≤ ‖M‖∞
∑
i∈Gg

‖Z ′iXi‖∞ ≤M4|Gg|m
√
qT , and

∥∥∥∥∥∥
∑
i∈Gg

X̃ ′iX̃i

∥∥∥∥∥∥
∞

≤ ‖M‖∞
∑
i∈Gg

‖X ′iXi‖∞ ‖M
′‖∞ ≤M2|Gg|m

√
mT (L+ 1 + 2K)

hold with probability at least 1−ε for any ε > 0 defined in Assumption 2. Therefore, with probability

at most 1− ε,

‖WW ′‖2 = ‖W ′W‖2 = ‖diag(W ′1W1, · · · ,W ′nWn)‖2 ≤ sup
i
‖W ′iWi‖2

≤ √p sup
i
‖W ′iWi‖∞ =

√
p sup

i

∥∥∥∥∥∥∥
Z ′iZi Z ′iX̃i

X̃ ′iZi X̃ ′iX̃i

∥∥∥∥∥∥∥
∞

≤ M̃m
√
TBq,m

√
p.

Since tr(WW ′) = tr(W ′W ) ≤ np‖W ′W‖2 and tr((WW ′)2) = tr((W ′W )2) ≤ np‖W ′W‖22,

tr(WW ′) + 2
√
tr[(WW ′)2]ζ∗ + 2‖WW ′‖2ζ∗ ≤ (np+ 2

√
npζ∗ + 2ζ∗)‖WW ′‖2.

Since ||WW ′||2 is bounded in probability, for any ε > 0, there exists some M∗ = M̃m
√
TBq,m

√
p

such that P [‖WW ′‖2 > M∗] ≤ ε. Therefore

P
[
‖W ′ε‖22 > Sζ∗

∣∣W, ‖WW ′‖2 ≤M∗
]
≤ e−ζ

∗
, 1− ε < P (‖WW ′‖2 ≤M∗) ≤ 1,

P
[
‖W ′ε‖22 > Sζ∗

∣∣W, ‖WW ′‖2 > M∗
]
≤ 1, P (‖WW ′‖2 > M∗) ≤ ε,

and P
[
‖W ′ε‖22 > Sζ∗

]
≤ e−ζ∗ + ε where Sζ∗ = 2c̃(np+ 2

√
npζ∗ + 2ζ∗)M∗.

Without loss of generality, let ζ̃∗ = min{ζ∗,− log(ε)} for a large constant ζ∗ > 1 and for small
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positive constant ε ≤ 1, then e−ζ
∗

+ ε = e−ζ
∗

+elog(ε) = e−ζ̃
∗
(1+e−|ζ

∗+log(ε)|) ≤ 2e−ζ̃
∗

= elog(2)−ζ̃
∗
.

Take ι∗ = ζ̃∗ − log(2), then P
[
‖W ′ε‖22 > Sζ∗

]
≤ e−ι

∗
. For large enough ζ̃∗, log(2) is negligible.

Similarly, Sζ in P
[
‖Γ′W ′ε‖22 > Sζ

]
≤ e−ι can be found as the following.

A straightforward calculation derives that

Γ′W ′WΓ = diag

(∑
i∈G1

W ′iWi, . . . ,
∑
i∈GG

W ′iWi

)
.

It follows that, with probability 1− ε,

‖Γ′W ′WΓ‖∞ = max
1≤g≤G

∥∥∥∥∥∥
∑
i∈Gg

W ′iWi

∥∥∥∥∥∥
∞

≤ max
1≤g≤G

∑
i∈Gg

‖W ′iWi‖∞ ≤ gmax sup
1≤i≤n

‖W ′iWi‖∞

≤ gmaxmM̃
√
TBq,m,

and therefore,

‖Γ′W ′WΓ‖2 ≤
√
Gp‖Γ′W ′WΓ‖∞ ≤ gmaxmM̃

√
GpTBq,m.

For any ε > 0, there exists some M = gmaxmM̃
√
TBq,m, such that P [‖WΓΓ′W ′‖2 > M ] ≤ ε,

then

P
[
‖Γ′W ′ε‖22 > Sζ

∣∣W, ‖WΓΓ′W ′‖22 ≤M
]
≤ e−ζ , 1− ε < P (‖WΓΓ′W ′‖2 ≤M) ≤ 1,

P
[
‖W ′ε‖2 > Sζ

∣∣W, ‖WΓΓ′W ′‖2 > M
]
≤ 1, P (‖WΓΓ′W ′‖2 > M) ≤ ε.

Therefore, P
[
‖Γ′W ′ε‖22 > Sζ

]
≤ e−ζ + ε where Sζ = 2c̃(Gp + 2

√
Gpζ + 2ζ)M . Similarly, take

ι = min{ζ,− log(ε)} − log(2), then P
[
‖Γ′W ′ε‖22 > Sι

]
≤ e−ι.

B.2 Convergence of the Oracle Estimator

Theorem 1 and Corollary 1 are proved in this section.
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Proof of Theorem 1. The definition of Γ and y = Wγor + ε lead to

γ̂or − γ0 = Γ(Γ′W ′WΓ)−1Γ′W ′ε

= Γ
{

diag
(∑

i∈G1 W
′
iWi, . . . ,

∑
i∈GGW

′
iWi

)}−1

∑
i∈G1 W

′
iεi

...∑
i∈GGW

′
iεi

 ,

where for any g ∈ {1, . . . , G},

∑
i∈Gg

W ′iWi =

 ∑
i∈Gg Z

′
iZi (

∑
i∈Gg Z

′
iXi)M

′

M(
∑
i∈Gg X

′
iZi) M(

∑
i∈Gg X

′
iXi)M

′

 and
∑
i∈Gg

W ′iεi =

 ∑
i∈Gg Z

′
iεi

M(
∑
i∈Gg X

′
iεi)

 .

Assumption 2 implies that

λmin(Γ′W ′WΓ) ≥ cgminT,

so that

‖(Γ′W ′WΓ)−1‖∞ ≤
√
Gp‖(Γ′W ′WΓ)−1‖2 ≤

√
Gp(cgminT )−1. (B.2)

For all p-norms, ‖A⊗B‖ = ‖A‖‖B‖ holds (for example, see p. 433 of Langville and Stewart [2004]),

‖Γ‖∞ ≤ ‖Π‖∞‖Ip‖∞ = 1. (B.3)

Lemma 3, equations (B.2) and (B.3), and the triangle inequality imply that for any ι > 0,

‖γ̂or − γ0‖∞ ≤ ‖Γ‖∞‖(Γ′W ′WΓ)−1‖∞‖Γ′W ′ε‖∞

≤ (Gp)1/2(cgminT )−1‖Γ′W ′ε‖2 ≤ (Gp)1/2(cgminT )−1S
1/2
ζ ,

with probability at least 1− eι. Therefore,

φn,T,G,ζ :=

√
2c̃

c

(mM̃gmax)1/2(Gp)3/4

gminT 3/4
B1/2
q,m(Gp+ 2

√
Gp
√
ζ + 2ζ)1/2, (B.4)
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where Bq,m is defined in Lemma 3. Therefore, with probability at least 1− e−ι,

‖γ̂or − γ0‖∞ ≤ φn,T,G,ζ .

This proves the first part of Theorem 1. The remaining proof is for the asymptotic normality

of γ̂or. Let Vi = Wi(Πi· ⊗ Ip) be a T × Gp matrix, where Πi· is the i-th row of the matrix Π,

V = WΓ = (V ′1 , · · · , V ′n)′. Then, for any cn ∈ RGp with ‖cn‖2 = 1,

c′n(γ̂or − γ0) =

n∑
i=1

c′n(V ′V )−1V ′i εi =

n∑
i=1

c′n(V ′V )−1
T∑
t=1

v′itεit.

Since {εi} is assumed to be an i.i.d. subgaussian distributed sequence with mean 0 and variance

proxy 2c̃, then E(εi) = 0. Hence,

E
[
c′n(γ̂or − γ0)

]
= 0.

Suppose that Assumption 2 and 4 hold where λmax(V ′V ) = λmax(Γ′W ′WΓ) ≤ c∗|Gg|T ≤ c∗gmaxT

and V ar(εit) = O(2c̃), then

σ2
γ := V ar[c′n(γ̂or − γ0)] ≥ V ar(εit)

c∗gmaxT
.

Moreover, for any ε > 0, applying Cauchy-Schwarz inequality,

n∑
i=1

E
(
(c′n(V ′V )−1V ′i εi)

2
1{|c′n(V ′V )−1Viεi| > εσγ}

)
≤

n∑
i=1

{
E(c′n(V ′V )−1V ′i εi)

4
}1/2 {

E
(
1{|c′n(V ′V )−1V ′i εi| > εσγ}2

)}1/2
=

n∑
i=1

{
E(c′n(V ′V )−1V ′i εi)

4
}1/2 {

E
(
1{|c′n(V ′V )−1V ′i εi| > εσγ}

)}1/2
=

n∑
i=1

{
E(c′n(V ′V )−1V ′i εi)

4
}1/2 {

P (|c′n(V ′V )−1V ′i εi| > εσγ)
}1/2

.

(B.5)
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The first term can be derived as

[
E(c′n(V ′V )−1V ′i εi)

4
]1/2

=
[
E(c′n(V ′V )−1V ′i εiε

′
iV
′
i (V ′V )−1cn)2

]1/2
=
[
{c′n(V ′V )−1Vi}2E(εiε

′
i)

2{V ′i (V ′V )−1cn
}2

]1/2

= c′n(V ′V )−1Vi[E(εiε
′
i)

2]1/2V ′i (V ′V )−1cn

≤ ‖c′n(V ′V )−1Vi‖22
∥∥E(εiε

′
i)

2
∥∥1/2
2

.

For any n× n matrix A, ‖A‖2 ≤
√
n‖A‖∞. Since E(εkit) ≤ (2σ2)k/2kΓ(k/2) for k ≥ 1, then

∥∥E(εiε
′
i)

2
∥∥
2
≤
√
T
∥∥E(εiε

′
i)

2
∥∥
∞ =

√
T max
τ=1,···,T

E

(
εiτ

T∑
t=1

εit

T∑
t=1

ε2it

)
≤
√
T (16 + T )4c̃2.

According to Assumption 2, ‖Vi‖∞ is bounded and let the upper bound be some constant c2, then

‖Vi‖2 ≤
√
Gpc2. Following 2, ‖(V ′V )−1‖2 ≥ (cgminT )−1,

{
E(c′n(V ′V )−1Viεit)

4
}1/2 ≤ ‖c′n‖22‖(V ′V )−1‖22‖Vi‖22T 1/4(16 + T )1/22c̃2

≤ c22Gp(16 + T )1/22c̃

c2g2minT
3/4

.

Then, by Chebyshev’s inequality, the second term of (B.5) can be derived as

P (|c′n(V ′V )−1Viεi| > εσγ) ≤ E[c′n(V ′V )−1Viεi]
2

ε2σ2
γ

, (B.6)

where

E(c′n(V ′V )−1Viεi)
2 = E(c′n(V ′V )−1Viεiε

′
iV
′
i (V ′V )−1cn)

≤ ‖cn‖22‖(V ′V )−1‖22‖Vi‖22‖E(εiε
′
i)‖2 ≤

c22Gp2c̃

c2g2minT
2
,

then, (B.6) becomes

P (|c′n(V ′V )−1Viεi| > εσγ) ≤ c22Gp2c̃

c2g2minT
2ε2σ2

γ

.
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Therefore, the following inequality can be derived.

σ−2γ

n∑
i=1

E
(
(c′n(V ′V )−1Viεi)

2
1{|c′n(V ′V )−1Viεi| > εσγ}

)
≤σ−2γ

n∑
i=1

c22Gp(16 + T )1/22c̃

c2g2minT
3/4

c2(Gp)1/2
√

2c̃

cgminTεσϕ
=
c32p

3/2(2c̃)3/2G3/2(16 + T )1/2n

c3εg3minT
7/4σ3

γ

≤C (2c̃)3/2(n/gmin)3/2n(16 + T )1/2

σ3
γg

3
minT

7/4
= C

c̃3n5/2(16 + T )1/2

σ3
ϕg

9/2
minT

7/4

=C
n5/2(16 + T )1/2c∗

3/2

g
3/2
maxT 3/2

g
9/2
minT

7/4
= O

(
g
3/2
maxn5/2T 1/4

g
9/2
min

)
.

(B.7)

Suppose that
g3min

gmax
� n5/3T 1/6, then (B.7) further implies that

σ−2γ

n∑
i=1

E
(
(c′n(V ′V )−1Viεi)

2
1{|c′n(V ′V )−1Viεi| > εσγ}

)
= O(1).

By the Lindeberg-Feller Central Limit Theorem, c′n(γ̂or − γ0)→ N(0, σ2
γ).

Proof of Corollary 1. In the following proof, let m and q be fixed for simplification. It further

indicates that p is fixed. Let Cq,m =
√
2c̃
c m1/2p3/4B

1/2
q,m, (B.4) can be simplified as

φn,T,G = Cq,m
g
1/2
maxG3/4

gminT 3/4
(Gp+ 2

√
Gp
√
ζ + 2ζ)1/2.

The rest of the proof suggests a large enough ζ for each situation that allows φn,T,G,ζ and ι to

approach infinity. We often use these somewhat trivial inequalities gmax ≤ n and G ≤ n/gmin in

the following proofs, particularly when n→∞.

1. Consider T → ∞ with n fixed. Let ζ → ∞ and ζ = o(T 3/2). Since G ≤ n � ζ, then

(Gp+ 2
√
Gp
√
ζ + 2ζ)1/2 = O(2ζ1/2). Therefore,

φn,T,G = C1T
−3/4O(ζ1/2)

T→∞−→ 0,

where C1 = 2Cq,m
g1/2maxG

3/4

gmin
, which is free of T .
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2. Consider n→∞ with T fixed.

(a) Consider G� ζ →∞.

i. When G is fixed, then (Gp + 2
√
Gp
√
ζ + 2ζ)1/2 = O(2ζ1/2). For some constant

α̃0 < 1/2, let gmin = O(n1/2+α̃0), ζ = o(n2α̃0) and ζ →∞, then

φn,T,G ≤ C3
n1/2

gmin
O(ζ1/2)

n→∞−→ 0,

where C3 = 2Cq,m
G3/4

T 3/4 , which is free of n.

ii. When G → ∞, for some constant α̃2 < 2/7, let gmin = O(n5/7+α̃2), ζ = o(n7α̃2/2)

and ζ →∞, then (Gp+2
√
Gpζ+2ζ)1/2 = O((p+2

√
p+2)1/2ζ1/2). SinceG ≤ n/gmin,

then

φn,T,G ≤ C4
n1/2G3/4

gmin
O(ζ1/2) ≤ C4

n5/4

g
7/4
min

O(ζ1/2)
n,G→∞−→ 0,

where C4 = Cq,m
1

T 3/4 (p+ 2
√
p+ 2)1/2, which is free of n and G.

(b) Consider G → ∞. Let gmin = O(n7/9+α̃1) for some α̃1 < 2/9, ζ = O(G) and ζ → ∞,

then Gp+ 2
√
Gp
√
ζ + 2ζ = O((p+ 2

√
p+ 2)G) = O(G). Therefore,

φn,T,G ≤ C2
n1/2G3/4

gmin
O(G1/2)

n→∞−→ 0,

where C2 = Cq,m
1

T 3/4 (p+ 2
√
p+ 2)1/2, which is free of n.

3. Consider T, n→∞.

(a) Consider G� ζ →∞,

i. When G is fixed, then (Gp + 2
√
Gpζ + 2ζ)1/2 = O(2ζ1/2). Let gmin = O(n1/2+α̃0)

for some positive constant α̃0 < 1/2 and ζ = o(n2α̃0T 3/2), ζ →∞, then

φn,T,G ≤ C6
n1/2

gminT 3/4
O(ζ1/2)

n,T→∞−→ 0,

where C6 = 2Cq,mG
3/4.
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ii. When G → ∞, for some positive constant α̃2 < 2/7, let gmin = O(n5/7+α̃2) and

G ≤ n/gmin, ζ = o(n7α̃2/2T 3/2) and ζ →∞, then (Gp+ 2
√
Gpζ + 2ζ)1/2 = O((p+

2
√
p+ 2)1/2ζ1/2). Since G ≤ n/gmin, then

φn,T,G ≤ C7
n1/2G3/4

gminT 3/4
O(ζ1/2) ≤ C7

n5/4

g
7/4
minT

3/4
O(ζ1/2)

n,T,G→∞−→ 0,

where C7 = Cq,m(p+ 2
√
p+ 2)1/2, which is freen of n, T and G.

(b) Consider G → ∞. Let gmin = O(n7/9+α̃1) for some constant α̃1 < 2/9, ζ = O(G) and

ζ →∞, then Gp+ 2
√
Gpζ + 2ζ = O((p+ 2

√
p+ 2)G) = O(G). Since G ≤ n/gmin,

φn,T,G ≤ C5
n1/2G3/4

gminT 3/4
O(G1/2) ≤ C5

n7/4

g
9/4
minT

3/4
O(1)

n,T,G→∞−→ 0,

where C5 = Cq,m(p+ 2
√
p+ 2p)1/2, which is free from n, T and G.

Combining items 2 and 3 above, we can summarize the choice of ζ as follows:

Case 1. The number n is fixed. Let ζ = o(T 3/2) as T →∞;

Case 2. The number n→∞. Whether T is fixed or T →∞,

(a) when G is fixed, and gmin = O(n1/2+α̃4) for some constant α̃4 < 1/2. Let ζ =

o(n2α̃4T 3/2) approaching infinity;

(b) when G→∞,

i. suppose gmin = O(n7/9+α̃3) for some constant α̃3 < 2/9. Let ζ = O(G) approaching

infinity;

ii. suppose gmin = O(n5/7+α̃5) for some constant α̃5 < 2/7. Let ζ = o(n7α̃5/2T 3/2)� G

approaching infinity.

B.3 Convergence of the Calculated Estimator (G ≥ 2)

Proof of Theorem 2. This can be done similarly to the proof of Theorem 4.2 in Ma and Huang

[2016].
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Define MG := {γ ∈ Rnp : γi = γj ,∀i, j ∈ Gg, g = 1, · · · , G} and the scaled penalty function

as ρ̃θ(‖γi − γj‖) = λ−11 ρθ(‖γi − γj‖, λ1). Let the least-squares objective function and the penalty

function be

L(γ) =
1

2
‖y −Wγ‖22, P (γ) = λ1

∑
i<j

ρ̃θ(‖γi − γj‖2)

LG(ϕ) =
1

2
‖y −WΓϕ‖22, PG(ϕ) = λ1

∑
g<g′

|Gg‖Gg′ |ρ̃θ(‖ϕg −ϕg′‖2).

(B.8)

Let Q(γ) = L(γ) + P (γ), Q(γ)G(ϕ) = LG(ϕ) + PG(ϕ) and define

� F : MG → RGp. The g-th vector component of F (γ) equals to the common value of γi for

i ∈ Gg.

� F ∗ : Rnp → RGp. F ∗(γ) = {|Gg|−1
∑
i∈Gg γ

′
i, g = 1, · · · , G}′, which implies the average of

each cluster vectors.

It results in that F (γ) = F ∗(γ) if γ ∈ MG . Hence, for every γ ∈ MG , P (γ) = PG(F (γ)), and for

every ϕ ∈ RGp, P (F−1(ϕ)) = PG(ϕ). Hence,

Q(γ) = QG(F (γ)), QG(ϕ) = Q(F−1(ϕ)). (B.9)

Theorem 1 results in that for some ι > 0,

P (sup
i
‖γ̂ori − γ0

i ‖2 ≤ p sup
i
‖γ̂ori − γ0

i ‖∞ = p‖γ̂or − γ0‖∞ ≤ pφn,T,G,ζ) ≥ 1− eι,

there exists an event E1 in which supi ‖γ̂
or
i − γ0

i ‖2 ≤ pφn,T,G = φ̃n,T,G, such that P (EC1 ) ≤ e−ι.

Consider the neighborhood of the true parameter γ0,

Θ := {γ ∈ Rnp : sup
i
‖γi − γ0

i ‖2 ≤ φ̃n,T,G}.

It implies that γ̂or ∈ Θ on the event E1. For any γ ∈ Rnp, let γ∗ = F−1(F ∗(γ)), then γ∗i =

1
|Gg|

∑
i∈Gg γi which implies that γ∗ is a vector with duplicated group average of γi. Through two

steps as the following, the statement can be proved that with probability approximating to 1, γ̂or
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is a strictly local minimizer of Q(γ).

i. In E1, Q(γ∗) > Q(γ̂or) for any γ ∈ Θ and γ∗ 6= γ̂or. This indicates that the oracle estimator

γ̂or is the minimizer over all duplicated group average γ∗.

ii. There exists an event E2 such that for large enough ι∗, P (EC2 ) ≤ e−ι
∗
. In E1 ∩ E2, there

exists a neighborhood Θn of γ̂or such that Q(γ) ≥ Q(γ∗) for all γ∗ ∈ Θn ∩Θ for sufficiently

large n. It means that for all γ, the duplicated group average γ∗ is the minimizer.

Then, it results in Q(γ) > Q(γ̂or) for any γ ∈ Θn ∩ Θ and γ 6= γ̂or in E1 ∩ E2. Hence, over

E1 ∩ E2, for large enough ι and ι∗, γ̂or is a strictly local minimizer of Q(γ) with the probability

P (E1 ∩ E2) ≥ 1− e−ι − e−ι∗ .

First, show PG(F ∗(γ)) = C for any γ ∈ Θ, where C is a constant which does not depend on γ.

It implies that when γ is close enough to the true parameter γ0, the penalty term would not affect

the objective function with respect to different values of γ. Let F ∗(γ) = ϕ. Consider the triangle

inequality ‖ϕg −ϕg′‖2 ≥ ‖ϕ0
g −ϕ0

g′‖2 − 2 supg ‖ϕg −ϕ0
g‖2. Since γ ∈ Θ, then

sup
g
‖ϕg −ϕ0

g‖22 = sup
g

∥∥∥∥∥∥|Gg|−1
∑
i∈Gg

γi −ϕ0
g

∥∥∥∥∥∥
2

2

= sup
g

∥∥∥∥∥∥|Gg|−1
∑
i∈Gg

(γi − γ0
i )

∥∥∥∥∥∥
2

2

= sup
g
|Gg|−2

∥∥∥∥∥∥
∑
i∈Gg

(γi − γ0
i )

∥∥∥∥∥∥
2

2

≤|Gg|−1 sup
g

∑
i∈Gg

∥∥(γi − γ0
i )
∥∥2
2
≤ sup

i

∥∥(γi − γ0
i )
∥∥2
2
≤ φ̃2n,T,G,

(B.10)

Since bn,T,G := ming 6=g′ ‖ϕ0
g −ϕ0

g′‖, then for all g 6= g′ and bn,T,G > aλ+ 2φ̃n,T,G,

‖ϕ0
g −ϕ0

g′‖2 ≥ ‖ϕ0
g −ϕ0

g′‖2 − 2 sup
g
‖ϕg −ϕ0

g‖2 ≥ bn,T,G − 2φ̃n,T,G > aλ1,

for some a > 0. Then by Assumption 6, ρ(‖ϕg−ϕg′‖2) is a constant, and furthermore, PG(F ∗(ϕ))

is a constant. Therefore, PG(F ∗(γ)) = C, and QG(F ∗(γ)) = LG(T ∗(γ)) + C for all γ ∈ Θ. Since

ϕ̂or is the unique global minimizer of LGn(ϕ), then LG(T ∗(γ)) > LG(ϕ̂or) for all T ∗(γ) 6= ϕ̂or and

hence QG(T ∗(γ)) > QG(ϕ̂or) for all T ∗(γ) 6= ϕ̂or. By the property of the clustering algorithm, for
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the g-th group, ϕ̂org = |Gg|−1
∑
i∈Gg γ̂

or
i , which implies that, along with the definition of operation

F , ϕ̂org equals to the g-th component of F (γ̂or) for all i ≤ g ≤ G. Then, by (B.9),

QG(ϕ̂or) = QG(T (γ̂or)) = Q(γ̂or).

Furthermore, QGn(T ∗(γ)) = Q(T−1(T ∗(γ))) = Q(γ∗). Therefore, Q(γ∗) > Q(γ̂or) for all γ∗ 6= γ̂or.

Second, for a positive sequence rn, let Θn := {γi : supi ‖γi− γ̂
or
i ‖2 ≤ rn}. For any γ ∈ Θn ∩Θ,

by the first order Taylor’s expansion,

Q(γ)−Q(γ∗) =
dQ(γm)

dγ′
(γ − γ∗) =

dL(γm)

dγ′
(γ − γ∗) +

n∑
i=1

∂P (γm)

∂γ′i
(γ − γ∗),

and let S1 =
dL(γm)

dγ′i
(γ − γ∗i ) and S2 =

∑n
i=1

∂P (γm)

∂γ′i
(γi − γ∗i ). Since

dL(γ)

γi
=

1

2
(−2y′W + 2γ′W ′W ) = −(y′ − γ′W )W and

∂P (γ)

∂γi
= λ1

n∑
i=1

ρ̃′θ(‖γi − γj‖2)
1

2‖γi − γj‖2
2(γi − γj)

= λ1

n∑
i=1

ρ̃′θ(‖γi − γj‖2)
γi − γj
‖γi − γj‖2

,

we have

S1 = −(y′ − γm′W )W (γ − γ∗) and S2 =

n∑
i=1

∂P (γm)

∂γ′i
(γi − γ∗i ).
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Let γm = ϑγ + (1− ϑ)γ∗ for some constant ϑ ∈ (0, 1). Then,

S2 =λ1
∑
i<j

ρ̃′θ(‖γmi − γmj ‖2)‖γmi − γmj ‖−12 (γmi − γmj )′(γi − γ∗i )

+ λ1
∑
i>j

ρ̃′θ(‖γmi − γmj ‖2)‖γmi − γmj ‖−12 (γmi − γmj )′(γi − γ∗i )

=λ1
∑
i<j

ρ̃′θ(‖γmi − γmj ‖2)‖γmi − γmj ‖−12 (γmi − γmj )′(γi − γ∗i )

+ λ1
∑
i<j

ρ̃′θ(‖γmj − γmi ‖2)‖γmj − γmi ‖−12 (γmj − γmi )′(γj − γ∗j )

=λ1
∑
i<j

ρ̃′θ(‖γmi − γmj ‖2)‖γmi − γmj ‖−12 (γmi − γmj )′[(γi − γ∗i )− (γj − γ∗j )].

(B.11)

Consider separating S2 into two parts, i, j ∈ Gg, and i ∈ Gg, j ∈ Gg′ for g 6= g′. When i, j ∈ Gg,

since γ∗ = T−1(T ∗(γ)) ∈MG , then γ∗i = γ∗j . Thus, the RHS of (B.11) becomes

S2 =λ1

G∑
g=1

∑
i,j∈G,i<j

ρ̃′θ(‖γmi − γmj ‖2)‖γmi − γmj ‖−12 (γmi − γmj )′(γi − γj)

+ λ1
∑
g<g′

∑
i∈Gg,j∈Gg′

ρ̃′θ(‖γmi − γmj ‖2)‖γmi − γmj ‖−12 (γmi − γmj )′[(γi − γ∗i )− (γj − γ∗j )].

(B.12)

Furthermore, by (B.10), for any γ ∈ Θn ∩ Θ, F ∗(γ) = ϕ, and therefore, for all i ∈ Gg, γ∗i = ϕg.

This lead to

sup
i
‖γ∗i − γ0

i ‖22 = sup
g
‖ϕg −ϕ0

g‖22 ≤ φ̃2n,T,G, (B.13)

where the inequality in (B.13) is obtained by (B.10). Since γmi = ϑγi + (1− ϑ)γ∗i , by the triangle

inequality,

sup
i
‖γmi − γ0

i ‖2 = sup
i
‖ϑγi + (1− ϑ)γ∗i − γ0

i ‖2

= sup
i
‖ϑγi + (1− ϑ)γ∗i − (ϑ+ 1− ϑ)γ0

i ‖2

≤ ϑ sup
i
‖γi − γ0

i ‖2 + (1− ϑ) sup
i
‖γ∗i − γ0

i ‖2

≤ ϑφ̃n,T,G + (1− ϑ)φ̃n,T,G = φ̃n,T,G.
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Hence, for g 6= g′, i ∈ Gg, j ∈ Gg′ ,

‖γmi − γmj ‖2 = ‖γmi − γ0
i − γmj + γ0

j‖2 ≥ ‖γ0
i − γ0

j‖2 − 2 max
1≤k≤n

‖γmk − γ0
k‖2

≥ min
i∈Gg,j′∈Gg′

‖γ0
i − γ0

j‖2 − 2 max
1≤k≤n

‖γmk − γ0
k‖2 ≥ bn,T,G − 2φ̃n,T,G > aλ1.

Since ρ̃θ(x) is constant for all x ≥ aλ1, then ρ̃′θ(‖γmi −γmj ‖2) = 0. Therefore, following γmi −γmj =

ϑ(γi − γj) for i, j ∈ Gg, (B.12) becomes

S2 =λ1

G∑
g=1

∑
i,j∈G,i<j

ρ̃′θ(‖γmi − γmj ‖2)

‖γmi − γmj ‖2
(γmi − γmj )′(γi − γj)

+ λ1
∑
g<g′

∑
i∈Gg,j∈Gg′

ρ̃′θ(‖γmi − γmj ‖2)

‖γmi − γmj ‖2
(γmi − γmj )′[(γi − γ∗i )− (γj − γ∗j )]

=λ1

G∑
g=1

∑
i,j∈Gg,i<j

ρ̃′θ(‖γmi − γmj ‖2)

‖γmi − γmj ‖2
(γmi − γmj )′(γi − γj)

=λ1

G∑
g=1

∑
i,j∈Gg,i<j

ρ̃′θ(‖γmi − γmj ‖2)

‖ϑ(γi − γj)‖2
ϑ(γi − γj)′(γi − γj)

=λ1

G∑
g=1

∑
i,j∈Gg,i<j

ρ̃′θ(‖γmi − γmj ‖2)‖γi − γj‖2.

Furthermore, similarly to (B.10), for all i ∈ Gg, γ∗i = ϕg, supi ‖γ∗i − γ̂
or
i ‖22 = supg ‖ϕg − ϕ̂

or
g ‖22 ≤

supi ‖γi − γ̂
or
i ‖22. Then, since γ∗i = γ∗j ,

sup
i
‖γmi − γmj ‖2 = sup

i
‖γmi − γ∗i − γmj + γ∗j‖2

≤ ‖γ∗i − γ∗j‖2 + 2 sup
i
‖γmi − γ∗i ‖2 ≤ 2 sup

i
‖γmi − γ∗i ‖2

= 2 sup
i
‖ϑγi + (1− ϑ)γ∗i − γ∗i ‖2

= 2ϑ sup
i
‖γi − γ∗i ‖2 ≤ 2 sup

i
‖γi − γ∗i ‖2

≤ 2(sup
i
‖γi − γ̂

or
i ‖2 + sup

i
‖γ∗i − γ̂

or
i ‖2)

≤ 4 sup
i
‖γi − γ̂

or
i ‖2 ≤ 4rn.
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Hence, ρ̃′θ(‖γmi − γmj ‖2) ≥ ρ̃′θ(4rn), because ρ(x) is nondecreasing and concave as assumed in

Assumption 3. Then,

S2 ≥ λ1
G∑
g=1

∑
i,j∈Gk,i<j

ρ̃′θ(4rn)‖γi − γj‖2. (B.14)

Let U = (U ′1, · · · , U ′n)′ = [(y −Wγm)′W ]′, then

S1 =− U ′(γ − γ∗) = −(U ′1, · · · , U ′n)′



γ1 − γ∗1

γ2 − γ∗2
...

γn − γ∗n


= −

n∑
i=1

U ′i(γi − γ∗i )

=−
G∑
g=1

∑
i∈Gg

1

|Gg|
U ′i

|Gg|γi −∑
j∈Gg

γj


=−

G∑
g=1

∑
i∈Gg

1

|Gg|
U ′i
∑
j∈Gg

(
γi − γj

)
= −

G∑
g=1

∑
i,j∈Gg

U ′i(γi − γj)
|Gg|

=−
G∑
g=1

∑
i,j∈Gg

U ′i(γi − γj)
2|Gg|

+

G∑
g=1

∑
i,j∈Gg

U ′j(γi − γj)
2|Gg|

=−
G∑
g=1

∑
i,j∈Gg

(Uj − Ui)′(γj − γi)
2|Gg|

=−
G∑
g=1

∑
i,j∈Gg,i<j

(Uj − Ui)′(γj − γi)
|Gg|

. (B.15)

In addition, Ui = W ′i (yi−Wiγ
m
i ) = W ′i (Wiγ

0
i +εi−Wiγ

m
i ) = W ′i (εi+Wi(γ

0
i −γmi )), and then,

sup
i
‖Ui‖2 ≤ sup

i
{‖W ′iεi‖2 + ‖W ′iWi(γ

0
i − γmi )‖2}

≤ sup
i
‖W ′iεi‖2 + sup

i

√
p‖W ′iWi‖∞φ̃n,T,G

≤ sup
i
‖W ′iεi‖2 +m

√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

≤ sup
i

√
p‖W ′iεi‖∞ +m

√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

≤ √p‖W ′ε‖2 +m
√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

=
√
p‖W ′ε‖2 +m

√
pTBq,mφ̃n,T,G,
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whereBq,m = q1/2 +m1/2(L+ 1 + 2K). By Lemma 3, P
[
‖W ′ε‖22 > 2c̃(np+ 2

√
npζ∗ + 2ζ∗)mM̃

√
TBq,m

√
p
]
≤

e−ι
∗
, where Bq,m = (q1/2 + m1/2(L + 1 + 2K)), p = q + L + 1 + 2K, M̃ = max(M1,M2,M3,M4)

and c̃ given in Assumption 2 and 4. ι∗ is defined in Lemma 3. Then, over the event E2,

∣∣∣∣ (Uj − Ui)′(γj − γi)|Gg|

∣∣∣∣ ≤ g−1min‖Uj − Ui‖2‖γj − γi‖2 ≤ g−1min2 sup
i
‖Ui‖2‖γi − γj‖2

≤2g−1minT
1/4(mp)1/2‖γi − γj‖2(

p1/4B̃1/2
q,m(np+ 2

√
npζ∗ + 2ζ∗)1/2 + T 1/4m1/2Bq,mφ̃n,T,G

)
. (B.16)

Therefore, by (B.14), (B.15) and (B.16),

Q(γ)−Q(γ∗)

≥
G∑
g=1

∑
i,j∈Gg,i<j

‖γi − γj‖2

{
λ1ρ̃
′
θ(4rn)− 2g−1minT

1/4(mp)1/2(p1/4B̃1/2
q,m(np+ 2

√
npζ∗ + 2ζ∗)1/2

+T 1/4m1/2Bq,mφ̃n,T,G)
}

≥
G∑
g=1

∑
i,j∈Gg,i<j

‖γi − γj‖2

{
λ1ρ̃
′
θ(4rn)−B1g

−1
minT

1/4(np+ 2
√
npζ∗ + 2ζ∗)1/2 −B2g

−1
minT

1/2φ̃n,T,G

}
,

where B1 = 2(mpB̃q,m)1/2p1/4 and B2 = 2mp1/2Bq,m.

Let rn = o(1), then ρ̃′θ(4rn) → 1. Suppose that the following condition is true over the event

E1 ∩ E2,

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4 → 0, B2pg

−1
minT

1/2φn,T,G → 0, (B.17)

then P (Q(γ)−Q(γ∗) ≥ 0) ≥ 1− eι − eι∗ . Once (B.17) holds, Q(γ)−Q(γ∗) ≥ 0 with probability

approaching to 1 as ι, ι∗ →∞.

Note that ζ∗ = ζ∗n,T,G can be chosen as any sequence of numbers, as long as ζ∗ →∞ to ensure

ι∗ →∞. In the following argument, conditions on n, T , G, and other numbers that satisfies (B.17)

are spelled out:
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1. As T →∞ with n fixed, the proposed estimator does not converge to the oracle estimator.

2. As n→∞ with T fixed, if conditions in Corollary 1 are satisfied, the second part of (B.17) is

true. It is enough discuss the conditions for first part of (B.17). Choose ζ∗ such that ζ∗ ≤ n

and ζ∗ →∞ as n→∞. Let gmin � (p+ 2
√
p+ 2)1/2n1/2. Since (np+ 2

√
npζ∗ + 2ζ∗)1/2 =

(p+ 2
√
p+ 2)1/2O(n1/2),

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4 ≤ B1T

1/4g−1min(p+ 2
√
p+ 2)1/2O(n1/2)→ 0.

3-1. Let T, n→∞. Consider the first part of (B.17). Choose ζ∗ such that ζ∗ ≤ n and ζ∗ →∞ as

n→∞. Let gmin � (p+ 2
√
p+ 2)1/2n1/2T 1/4. Then

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4 ≤ B1g

−1
min(p+ 2

√
p+ 2)1/2n1/2T 1/4 → 0.

3-2. Let T, n→∞. Consider the second part of (B.17).

(a) Suppose G is fixed. Choose ζ such that ζ = o(n4α̃1T 1/2) and ζ →∞ as n, T →∞. Let

gmin = O(n1/4+α̃1) for some positive constant α̃1 < 3/4. Then, (Gp+2
√
Gpζ+2ζ)1/2 =

O(2ζ1/2), and

B2pg
−1
minT

1/2φn,T,G ≤ B2pC6
n1/2

g2minT
1/4

O(ζ1/2)
n,T→∞−→ 0,

where C6 = 2Cq,mG
3/4.

(b) Suppose G → ∞. Choose ζ such that ζ ≤ G and ζ → ∞ as n, T,G → ∞. Let

n7/13

T 1/13 � gmin < n/G. Then, G� T 1/13

n6/13 and Gp+2
√
Gpζ+2ζ ≤ (p+2

√
p+2)G = O(G).

Further, since G ≤ n/gmin,

B2pg
−1
minT

1/2φn,T,G ≤ B2pC5
n1/2G3/4T 1/2

g2minT
3/4

O(G1/2)

≤ B2pC5
n7/4

g
13/4
min T

1/4
O(1)

n,T,G→∞−→ 0,

where C5 = Cq,m(p+ 2
√
p+ 2p)1/2, which is free from n, T and G.
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(c) Suppose G→∞. Let gmin = O(n5/11+α̃7) for a positive constant α̃7 < 6/11. Choose ζ

such that G� ζ and ζ = o(n11α̃7/2T 1/2). Then, (Gp+ 2
√
Gpζ + 2ζ)1/2 = o((p+ 2

√
p+

2)1/2ζ1/2). Since G ≤ n/gmin,

B2pg
−1
minT

1/2φn,T,G ≤ B2pC7
n5/4

g
11/4
min T

1/4
O(ζ1/2)

n,T,G→∞−→ 0,

where C7 = Cq,m(p+ 2
√
p+ 2)1/2, which is free of n, T and G.

Combining the above calculations and the proof of Corollary 1, the conditions for (B.17) can be

summarized as follows:

1. Suppose n → ∞ with T fixed. Let (p + 2
√
p + 2)1/2n1/2 � gmin = O(n7/9+α̃0) ≤ n/2, then

(B.17) holds;

2. Suppose n, T →∞ and G is fixed. Let gmin = O(n1/2+α̃4) for some constant α̃4 < 1/2. Then,

(B.17) holds by choosing ζ and ζ∗ such that ζ = o(min(n1+4α̃4T 1/2, n2α̃4T 3/2)) approaching

infinity and ζ∗ ≤ n approaching infinity;

3. Suppose n, T,G→∞.

(a) Let max
{
n7/13

T 1/13 , (p+ 2
√
p+ 2)1/2n1/2

}
� gmin = O(n7/9+α̃3) for some constant α̃3 <

2/9. Then, (B.17) holds by choosing ζ = O(G) and ζ∗ ≤ n approaching infinity;

(b) Let gmin = O(n5/7+α̃5) for some constant α̃5 < 2/7. Then, (B.17) holds by choosing

ζ = o(min{n10/7+11/2α̃5T 1/2, n7α̃5/2T 3/2}).
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